TEACHING GUIDE

Module 10: MEASURES OF CENTRAL TENDENCY AND MEASURES OF VARIABILITY

Content Standard:
The learner demonstrates understanding of the key concepts of the different measures of tendency, variability of a given data, fundamental principles of counting and simple probability.

Performance Standard:
The learner computes and applies accurately the descriptive measures in statistics to data analysis and interpretation in solving problems related to research, business, education, technology, science, economics, and others.

<table>
<thead>
<tr>
<th>SUBJECT:</th>
<th>Grade 8 Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUARTER:</td>
<td>Fourth Quarter</td>
</tr>
<tr>
<td>STRAND:</td>
<td>Statistics and Probability</td>
</tr>
<tr>
<td>TOPIC:</td>
<td>Statistics</td>
</tr>
<tr>
<td>LESSON:</td>
<td>Measures of Central Tendency and measures of variability</td>
</tr>
</tbody>
</table>

LEARNING COMPETENCIES

KNOWLEDGE:
- Describe and illustrate the mean, median and mode of ungrouped and grouped data
- Describe a set of data using measures of central tendency and measures of variability
- Discuss the meaning of variability

SKILL:
- Find the mean, median, and mode of statistical data
- Calculate the different measures of variability of a given set of data: range, average deviation, variance, and standard deviation

ESSENTIAL UNDERSTANDING:
Knowledge of measures of central tendency and measures of variability can be applied to data analysis and interpretation.

ESSENTIAL QUESTION(S)
How are the concepts of descriptive measures in statistics (measures of central tendency, measures of variability) used in data analysis and interpretation?

TRANSFER GOAL:
Students will, on their own, apply data analysis and interpretation in fields such as research, business, education, science, technology, economics, etc, to make meaningful and informed decisions.
Learning Competencies:

The learner:
1. finds the mean, median and mode of statistical data
2. describes and illustrates the mean, median and mode of ungrouped and grouped data.
3. discusses the meaning of variability.
4. calculates the different measures of variability of a given set of data: (a) range; (b) average deviation; (c) variance; (d) standard deviation.
5. describes a set of data using measures of central tendency and measures of variability.

A. Planning for Assessment

1. Product/Performance

 The following are products and performances that the learners are expected to come up with in this module.

 a. Measures of central tendency and measures of variability drawn from real-life situation.
 b. Role-playing real-life situations where descriptive statistics are applied.
 c. Real-life problems involving the different measures of central tendency and measures of variability.
 d. Design a plan that would demonstrate students' understanding of descriptive statistics.
2. Assessment Matrix (Summative Test)

<table>
<thead>
<tr>
<th>Levels of Assessment</th>
<th>What will I assess?</th>
<th>How will I assess?</th>
<th>How Will I Score?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge 15%</td>
<td>Competencies</td>
<td>Paper and Pencil</td>
<td>A point per correct answer</td>
</tr>
<tr>
<td></td>
<td>• describes and illustrates the mean, median and mode of ungrouped and grouped data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• discusses the meaning of variability.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process/Skills 25%</td>
<td>• finds the mean, median and mode of statistical data</td>
<td>Problem Solving</td>
<td>A point per step in the problem solving process or through the use of rubrics</td>
</tr>
<tr>
<td></td>
<td>• calculates the different measures of variability of a given set of data: (a) range; (b) average deviation; (c) variance; (d) standard deviation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understanding 30%</td>
<td>• describes a set of data using measures of central tendency and measures of variability.</td>
<td>Problem Solving</td>
<td>Through the use of rubrics</td>
</tr>
<tr>
<td>Product 30%</td>
<td>GRASPS</td>
<td>Activity</td>
<td>Through the use of rubrics</td>
</tr>
</tbody>
</table>
INTRODUCTION AND FOCUS QUESTIONS

Have you ever wondered why a certain size of a pair shoes or a brand of shirt is made more available than the other sizes? Have you asked yourself why a certain basketball player gets more playing time than the rest of his teammates? Have you thought of comparing your academic performance with your classmates’? Have you wondered what score you need for each subject area to qualify for honors? Have you, at a certain time, asked yourself how norms and standards are made?
In this module you will find out the measures of central tendency and measures of variability. Remember to search for the answer to the following question(s):

- How can I make use of the representations and descriptions of a given set of data?
- What is the best way to measure a given set of data?

In this module, you will examine these questions when you study the following lessons.

LESSONS AND COVERAGE

Lesson 1: Measures of Central Tendency of Ungrouped Data
Lesson 2: Measures of Variability of Ungrouped Data
Lesson 3: Measures of Central Tendency of Grouped Data
Lesson 4: Measures of Variability of Grouped Data

In these lessons, you will learn to:

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Objectives:</th>
</tr>
</thead>
</table>
| 1 | • Find the mean, median, and mode of ungrouped data.
 | • Describe and illustrate the mean, median, and mode of ungrouped data. |
| 2 | • Discuss the meaning of variability.
 | • Calculate the different measures of variability of a given ungrouped data: range, standard deviation, and variance.
 | • Describe and interpret data using measures of central tendency and measures of variability. |
| 3 | • Find the mean, median, and mode of grouped data.
 | • Describe and illustrate the mean, median, and mode of grouped data. |
| 4 | • Discuss the meaning of variability.
 | • Calculate the different measures of variability of a given grouped data: range, standard deviation, and variance.
 | • Describe and interpret data using measures of central tendency and measures of variability. |
Here is a simple map of the lessons that will be covered in this module.

To do well in this module, you will need to remember and do the following:

1. Study each part of the module carefully.
2. Take note of all the formulas given in each lesson.
3. Have your own scientific calculator. Make sure you are familiar with the keys and functions in your calculator.
Check students’ prior knowledge, skills, and understanding of mathematics concepts related to Measures of Central Tendency and Measures of Variability. Assessing these will facilitate teaching and students’ understanding of the lessons in this module.

PRE - ASSESSMENT

Find out how much you already know about this topic. On a separate sheet, write only the letter of the choice that you think best answers the question.

1. Which measure of central tendency is generally used in determining the size of the most saleable shoes in a department store?
 a. mean
 b. median
 c. mode
 d. range
 Answer: C

2. The most reliable measure of variability is _______________.
 a. range
 b. variance
 c. average deviation
 d. standard deviation
 Answer: D

3. For the set of data consisting of 8, 8, 9, 10, 10, which statement is true?
 a. mean = mode
 b. median = mode
 c. mean = median
 d. mean < median
 Answer: C

4. Which measure of central tendency is greatly affected by extreme scores?
 a. mean
 b. median
 c. mode
 d. none of the three
 Answer: A

5. Margie has grades 86, 68 and 79 in her first three tests in Algebra. What grade must she obtain on the fourth test to get an average of 78?
 a. 76
 b. 77
 c. 78
 d. 79
 Answer: D
6. What is the median age of a group of employees whose ages are 36, 38, 18, 10, 16 and 15 years?
 a. 10 c. 16
 b. 15 d. 17
 Answer: D

7. Nine people gave contributions in pesos 100, 200, 100, 300, 300, 200, 200, 150, 100, and 100 for a door prize. What is the median contribution?
 a. Php 100 c. Php 175
 b. Php 150 d. Php 200
 Answer: C

8. If the heights in centimetres of a group of students are 180, 180, 173, 170, and 167, what is the mean height of these students?
 a. 170 c. 174
 b. 173 d. 180
 Answer: C

9. If the range of a set of scores is 14 and the lowest score is 7, what is the highest score?
 a. 21 c. 14
 b. 24 d. 7
 Answer: B

10. What is the standard deviation of the scores 5, 4, 3, 6 and 2?
 a. 2 b. 2.5 c. 3 d. 3.5
 Answer: A
11. What is the average height of the two teams in inches?

 Feet and inches
 6' 6/2 6'1 6'4 6'4 6'6
 72 73 76 76 78
 5'7 6'2 6'4 6'4 7'
 67 72 76 76 84

 a. 76 b. 78 c. 72 d. 75

 If you were to join any of these two teams, which team would you choose? Why?

 Answer: D

12. Electra Company measures each cable wire as it comes off the product line. The lengths in centimeters of the first batch of ten cable wires were: 10, 15, 14, 11, 13, 10, 10, 11, 12 and 13. Find the standard deviation of these lengths.

 a. 1.7 b. 1.8 c. 11.9 d. 10.9

 Answer: A

13. What is the variance in item 12?

 a. 3.4 b. 3.3 c. 3.24 d. 2.89

 Answer: D
For Items 14 – 15.

A video shop owner wants to find out the performance sales of his two branch stores for the last five months. The table shows their monthly sales in thousands of pesos.

<table>
<thead>
<tr>
<th>Branch A</th>
<th>20</th>
<th>18</th>
<th>18</th>
<th>19</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch B</td>
<td>17</td>
<td>15</td>
<td>25</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

14. What are the average sales of the two stores?
 a. 18
 c. 19
 b. 18.4
 d. 19.5
 Answer: B

15. Which store is consistently performing? Why?
 Answer: BRANCH A

For items 16 – 20 refer to the data below. Choose the letter that corresponds to the best answer:

<table>
<thead>
<tr>
<th>Class</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 – 50</td>
<td>1</td>
</tr>
<tr>
<td>41 – 45</td>
<td>2</td>
</tr>
<tr>
<td>36 – 40</td>
<td>3</td>
</tr>
<tr>
<td>31 – 35</td>
<td>10</td>
</tr>
<tr>
<td>26 – 30</td>
<td>6</td>
</tr>
<tr>
<td>21 – 25</td>
<td>9</td>
</tr>
<tr>
<td>16 – 20</td>
<td>5</td>
</tr>
<tr>
<td>11 – 15</td>
<td>6</td>
</tr>
<tr>
<td>6 – 10</td>
<td>4</td>
</tr>
<tr>
<td>1 – 5</td>
<td>2</td>
</tr>
</tbody>
</table>
16. What is the class size?
 a. 4 c. 5
 b. 3 d. 6
 Answer: C

17. What is the value of the median score?
 a. 24.10 c. 24.15
 b. 24.29 d. 24.39
 Answer: D

18. What is the range of the given set of data?
 a. 50 c. 49.5
 b. 50.5 d. 99.5
 Answer: A

19. What is the variance?
 a. 119.59 b. 119.49 c. 119.40 d. 119.50
 Answer: C

20. What is the standard deviation?
 a. 10.90 b. 10.91 c. 10.92 d. 10.93
 Answer: D

LEARNING GOALS AND TARGETS

After this lesson, you are expected to:

a. demonstrate understanding of the key concepts of the different measures of tendency and measures of variability of a given data.

b. compute and apply accurately the descriptive measures in statistics to data analysis and interpretation in solving problems related to research, business, education, technology, science, economics and others fields.
Let us begin with exploratory activities that will introduce you to the basic concepts of measures of central tendency and how these concepts are applied in real life.

Activity 1 contains familiar exercises provided to you in your Grade 7 modules.

Answer Key

Activity 1

1. a. Php 61
 b. Php 740

Teacher’s Note and Reminders

In Activity 1, let the students answer the given questions based on the given data.

Lesson 1

Measures of Central Tendency of Ungrouped Data

What to Know

Let us begin with exploratory activities that will introduce you to the basic concepts of measures of central tendency and how these concepts are applied in real life.

Activity 1 contains familiar exercises provided to you in your Grade 7 modules.

Activity 1

WHAT'S THE STORY BEHIND?

1. Daria bought T-shirts from a department store. She paid an average of Php74 per shirt. Part of the torn receipt is shown below.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Unit Price</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Red Shirt</td>
<td>78.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Blue Shirt</td>
<td>76.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>White Shirt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. How much did she pay for each white shirt?
b. How much did she pay in all? Why?

2. The bar chart shows the number of magazines borrowed from the library last week.

Answer Key

Activity 1

1. a. Php 61
 b. Php 740
Tell the learners that the activities that they have just accomplished provided them situations where the basic concepts of statistics are applied. The activities in this module will help them answer the question “How can I make use of the representations and descriptions of a given set of data?”.

Let the learners do Activity 2 to apply the concept of measures of central tendency in real-life situation. Give them opportunities to share ideas with their group mates to answer the given questions.

Teacher's Note and Reminders

- How many magazines were borrowed on Friday? Why?
- What is the average number of magazines borrowed per day last week? What does this value tell you? Why?
- On what day is the most number of magazines borrowed? Why?
- Describe the number of magazines borrowed on a Tuesday. Why do you think so?

3. The graph below shows the percentage of survey respondents reporting that they are satisfied with their current job. The horizontal axis is the years of schooling for different respondents.

![Bar graph showing percentage satisfaction by years of schooling]

a. What information can be obtained from the graph?
b. What conclusion can be made? Why?
c. What made you say that your conclusion was correct?
d. What necessary adjustment could be made to provide accurate information based on the graph?

Activity 2 MEAL DEAL

To cater to five hundred (500) students having snacks all at the same time, your school canteen designed three meal package for the students to choose from. The monitors of each section were tasked to collect the weekly orders of each student.
Directions: Form yourselves into groups. Distribute to each member of the group the three meal packages. Make a week list of your preferred meal package. Record your group’s order for the week on the sheet of paper below. Discuss with your group mates the answer to the questions below.

A. In your group,
1. what is the most preferred meal package?
2. how much was the canteen’s daily sales from each package? weekly sales?

B. If all the groups will summarize their report,
3. what might be the average weekly sales of the school canteen on each type of package?
4. explain how these will help the canteen manager improve
 4.1 the sales of the school canteen.
 4.2 the combination of the food in each package.

C. Make a combination of the food package of your choice.
Let the learners do activity 3. This activity provides the students the opportunity to recall the basic concepts of measures of central tendency.

Teacher’s Note and Reminders

Provide the learners enabling activities/experiences that they will have to go through to validate their understanding on averages during the activities in the What to Know phase.
After doing the activities in this section, the learners will be able to answer the question, “What is the best way to measure a given set of data?”.
The understanding gained would erase misconceptions about the different measures of central tendency that have been encountered before.

The activities that you have just accomplished provided you situations where the basic concepts of statistics are applied. In this module, you will do activities that will help you in answering the question “How can I make use of the representations and descriptions of a given set of data?”.

Activity 3 Which is Typical?

Directions: Read the statements found at the right column in the table below. If you agree with the statement, place a checkmark (✓) in the Before-Lesson-Response column beside it. If you don’t, mark it with (x).

<table>
<thead>
<tr>
<th>Before Lesson Response</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 is typical to the numbers 17, 25 and 30</td>
<td></td>
</tr>
<tr>
<td>6 is the typical score in the set of data 3, 5, 8, 6, 9</td>
<td></td>
</tr>
<tr>
<td>10 is a typical score in: 8, 7, 9, 10, and 6</td>
<td></td>
</tr>
<tr>
<td>18 is typical age in workers’ ages 17, 19, 20, 17, 46, 17, 18</td>
<td></td>
</tr>
<tr>
<td>5 is typical in the numbers 3, 5, 4, 5, 7, and 5</td>
<td></td>
</tr>
<tr>
<td>The mean is affected by the size of extreme values</td>
<td></td>
</tr>
<tr>
<td>The median is affected by the size of extreme values</td>
<td></td>
</tr>
<tr>
<td>The mode is affected by the size of extreme values</td>
<td></td>
</tr>
<tr>
<td>The mean is affected by the number of measures</td>
<td></td>
</tr>
<tr>
<td>The median is affected by number of measures</td>
<td></td>
</tr>
<tr>
<td>The mode is affected by the number of measures</td>
<td></td>
</tr>
</tbody>
</table>

Here are some enabling activities/experiences that you will perform to validate your understanding on averages in the What to Know phase.

After doing the activities in this section, it is expected that you will be able to answer the question, “What is the best way to measure a given set of data?”.
The understanding gained would erase misconceptions about the different measures of central tendency that you have encountered before.
In Activity 4, the students will do investigation about the given set of data. Then they will answer the given sets of questions in relation to measures of central tendency.

Observe how the mean, median and mode of the scores were obtained. Make a guess and complete the statements below.

a. The mean 6.7 was obtained by getting the average of the scores.
b. The median 7 is the middle score.
c. The mode 8 is the score with the greatest frequency.

If the learners have not discovered how the values were obtained let them proceed to Activity 4.2.

Teacher’s Note and Reminders

Activity 4

WATCH THIS!

4.1 A group of students obtained the following scores in a math quiz:
8, 7, 9, 10, 8, 6, 5, 4, 3

Arranging these scores in increasing order: 3, 4, 5, 6, 7, 8, 8, 9, 10,

<table>
<thead>
<tr>
<th>the mean is 6.7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4, 5, 6, 7, 8, 8, 9, 10</td>
</tr>
</tbody>
</table>

Observe how the mean, median and mode of the scores were obtained. Make a guess and complete the statements below.

a. The mean 6.7 was obtained by ________________________________.
b. The median 7 is the _____________________________________.
c. The mode 8 is the _________________________________

If you have not discovered how the values were obtained proceed to Activity 4.2.

4.2 If the score 5 of another student is included in the list.
3, 4, 5, 6, 7, 8, 8, 9, 10

<table>
<thead>
<tr>
<th>The mean is 6.5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4, 5, 5, 6, 7, 8, 8, 9, 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The median is 6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4, 5, 5, 6, 7, 8, 8, 9, 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The mode is 5 and 8.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4, 5, 5, 6, 7, 8, 8, 9, 10</td>
</tr>
</tbody>
</table>
Teacher's Note and Reminders

From these activities, you will see that the values are made to represent or describe a given set of data. You will know more about the characteristics of each type of measures of central tendency in the next activities and discussions.

Let's take a look at the mean.

The Mean

The mean (also known as the arithmetic mean) is the most commonly used measure of central position. It is used to describe a set of data where the measures cluster or concentrate at a point. As the measures cluster around each other, a single value appears to represent distinctively the typical value.

It is the sum of measures \(x\) divided by the number \(N\) of measures in a variable. It is symbolized as \(\bar{x}\) (read as x bar). To find the mean of an ungrouped data, use the formula

\[
\bar{x} = \frac{\sum x}{N}
\]

where \(\sum x = \) the summation of \(x\) (sum of the measures) and \(N = \) number of values of \(x\).

Example:
The grades in Geometry of 10 students are 87, 84, 85, 86, 90, 79, 82, 78, 76. What is the average grade of the 10 students?

Solution:

\[
\bar{x} = \frac{\sum x}{N}
\]

\[
\bar{x} = \frac{87 + 84 + 85 + 86 + 90 + 79 + 82 + 78 + 76}{10}
\]

\[
\bar{x} = \frac{832}{10}
\]

\[
\bar{x} = 83.2
\]

Hence, the average grade of the 10 students is 83.2. Consider another activity.
WHO’S REPRESENTING?

Sonya's Kitchen received an invitation for one person from a food exposition. The service crew seven member is very eager to go. To be fair to all, Sonya decided to choose a person whose age falls within the mean age of her seven members.

She made a list such as below:

<table>
<thead>
<tr>
<th>Service Crew</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager</td>
<td>47</td>
</tr>
<tr>
<td>Cook A</td>
<td>21</td>
</tr>
<tr>
<td>Cook B</td>
<td>20</td>
</tr>
<tr>
<td>Cashier</td>
<td>19</td>
</tr>
<tr>
<td>Walter A</td>
<td>18</td>
</tr>
<tr>
<td>Walter B</td>
<td>18</td>
</tr>
<tr>
<td>Waitress</td>
<td>18</td>
</tr>
</tbody>
</table>

a. What is the mean age of the service crew?
b. Is there someone in this group who has this age?
c. How many persons are older than the mean age? How many are younger?
d. Do you think this is the best measure of central tendency to use? Explain.

Answer: The mean age is 23. There is no one represented by this age. There is only one person older than 23 and six persons are younger than 23.

Explain to the learner how the mean is affected by extreme values. Very high or very low values can easily change the value of the mean.

The mean is not a reliable measure to use since it is affected by a very high value (the age 47) that is distorting the data.
The middle value here or term in a set of data arranged according to size/magnitude (either increasing or decreasing) is called the median.

Consider another situation in the next activity.

DO NOT FORGET!
Let us find out by following these simple steps:

a. Arrange the crew’s ages in numerical order.
b. Find the two middle values (ages).
c. Get the average of the two middle values.
d. What is now the median age?
e. How many are below this age? above this age?

Here are more examples for you to develop your skills in finding the median of a set of data.

Example 1:
The library logbook shows that 58, 60, 54, 35, and 97 books, respectively, were borrowed from Monday to Friday last week. Find the median.

Solution:
Arrange the data in increasing order.

35, 54, 58, 60, 97

We can see from the arranged numbers that the middle value is 58.
Since the middle value is the median, then the median is 58.

Example 2:
Andrea’s scores in 10 quizzes during the first quarter are 8, 7, 6, 10, 9, 5, 9, 6, 10, and 7. Find the median.

Solution:
Arrange the scores in increasing order.

5, 6, 6, 7, 7, 8, 9, 9, 10, 10

Since the number of measures is even, then the median is the average of the two middle scores.

\[Md = \frac{7 + 8}{2} = 7.5 \]

Hence, the median of the set of scores is 7.5

The next activity is another measure of central tendency. Try and discover for yourself the typical value we are looking for.
Answer Key

Activity 8
1. The most saleable shoe size is 6. 4 pairs were sold for the day.

2. Sections I-camia, I-lily and I-ilang-ilang have 50 students. While, sections I-Adelfa, I-tulip and I-Iris have 53 students.

3. None

Provide the students more exercises to work on after the discussion on mode.

Find the mode in the given sets of scores.
1. 10
2. 18
3. 8 and 9
4. No mode
5. 16 and 14

Teacher's Note and Reminders

DON'T FORGET!
From this activity, what is the characteristic of this value that we are looking for? This typical value is what we call the mode.

The next discussion will give you a clearer idea about the mode.

The Mode

The mode is the measure or value which occurs most frequently in a set of data. It is the value with the greatest frequency.

To find the mode for a set of data:

1. select the measure that appears most often in the set;
2. if two or more measures appear the same number of times, then each of these values is a mode; and
3. if every measure appears the same number of times, then the set of data has no mode.

Try answering these items.

Find the mode in the given sets of scores.
1. \{10, 12, 9, 10, 13, 11, 10\}
2. \{15, 20, 18, 19, 18, 16, 20, 18\}
3. \{5, 8, 7, 9, 6, 8, 5\}
4. \{7, 10, 8, 5, 9, 6, 4\}
5. \{12, 16, 14, 15, 16, 13, 14\}
Answer Key

Activity 9

a. What is the mean of the scores of both students?
 - **Mean of Zeny’s score is 13. Mean of Richard’s score is 12.**

b. How many scores are above and below the mean of these scores?
 - **Zeny’s scores: 1 score below and 5 above the mean.**
 - **Richard’s scores: 4 score below and 3 score above the mean.**

c. Check once more the distribution of scores, which of the two has a more consistent performance? **Richard has a better performance.**

d. Which of the two students will you send to represent your school in the competition? **Richard**

e. Try getting the median of these scores and compare with their mean.
 - **Zeny’s Median score is 11. Richard’s Median score is 12.**

f. Which do you think is the best measure to use to assess their performance? Explain.
 - **The median is the best measure to use for cases with extreme values.**

In Activity 10, let the students write their reflections on the impact of the lessons about measures of central tendency in their lives.

Teacher’s Note and Reminders

DON’T FORGET!

Write your reflection about where you have heard or encountered averages (e.g. business, sports, weather). How did this help you analyze a situation in the activities discussed?
Activity 11 WHAT A WORD!

Rearrange the letters to name the important words you have learned. Tell something about these words.

Answer Key

Practice Exercise

1. a. Mean = 30.71, Md = 34, No mode
 b. Mean = 10.18 Md = 9 Mode = 9
 c. Mean = 56.45 Md = 57 Mode = 57
 d. Mean = 18.27 Md = 18 Mode = 12 and 18 (bimodal)
 e. Mean = 35.25 Md = 35 Mode = 45

2. 12
3. 68.3
4. a. 165 kg
 b. 56.25 kg
5. a. 22
 b. 22
 c. 22
 d. Mean = 23.95, Md = 22, Mode = 22

Teacher's Note and Reminders

Practice Exercise:

1. Find the mean, median, and mode/modes of each of the following sets of data.
 a. 29, 34, 37, 22, 15, 38, 40
 b. 5, 6, 7, 9, 9, 9, 10, 14, 16, 20
 c. 82, 61, 93, 56, 34, 57, 92, 53, 57
 d. 26, 32, 12, 18, 11, 12, 15, 18, 21
 e. The scores of 20 students in a Biology quiz are as follows:
 25 33 35 45 34
 26 29 35 38 40
 45 38 28 29 25
 39 32 37 47 45

2. Athena got the following scores in the first quarter quizzes: 12, 10, 16, x, 13, and 9. What must be her score on the 4th quiz to get an average of 12?

3. The mean of 12 scores is 68. If two scores, 70 and 63 are removed, what is the mean of the remaining scores?
4. The average weight of Loida, Jackie and Jen is 55 kilograms.
 a. What is the total weight of these girls?
 b. Julie weighs 60 kilograms. What is the average weight of the four girls?

5. The data below show the score of 40 students in the 2010 Division Achievement Test (DAT).

<table>
<thead>
<tr>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>43</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>39</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>38</td>
</tr>
</tbody>
</table>

 a. What score is typical to the group of the students? Why?
 b. What score appears to be the median? How many students fall below that score?
 c. Which score frequently appears?
 d. Find the Mean, Median and Mode.
 e. Describe the data in terms of the mean, median, and mode.

Allow the learners to reflect and analyze how they developed a conceptual understanding about a variety of experiences. The learners should express his/her understanding of the different measures of central tendency by answering the question, “What is the best way to measure a given set of data?”.
Activity 12

1. a. 82
 b. 63
 c. 100
 d. 115

2. a. Mean = 2750, Median = 2475,
 Mode = 2450 and 2500
 b. Lisa: 78, 80, 100 c. Lina: 79, 80, 81
 d. Mary: 90, 92, 95 d. Willie: 65, 80, 80

3. Php 15 000

Teacher’s Note and Reminders

Answer Key

Activity 12

1. a. 82
 b. 63
 c. 100
 d. 115

2. a. Mean = 2750, Median = 2475,
 Mode = 2450 and 2500
 b. Lisa: 78, 80, 100 c. Lina: 79, 80, 81
 d. Mary: 90, 92, 95 d. Willie: 65, 80, 80

3. Php 15 000

Activity 12

WORK IN PAIRS

Analyze the following situations and answer the questions that follow. Make the necessary justifications if possible.

1. The first three test scores of each of the four students are shown. Each student hopes to maintain an average of 85. Find the score needed by each student on the fourth test to have an average of 85, or explain why such average is not possible.

 a. Lisa: 78, 80, 100 c. Lina: 79, 80, 81
 b. Mary: 90, 92, 95 d. Willie: 65, 80, 80

2. The weekly salaries in pesos of 6 workers of a construction firm are 2400,
 2450, 2450, 2500, 2500 and 4200.

 a. Compute for the mean, the median, and the mode
 b. If negotiations for new salaries are to be proposed, and you represent the management, which measure of central tendency will you use in the negotiation? Explain your answer.
 c. If you represent the labor union, which measure of central tendency will you use in the negotiation? Explain your answer.

3. The monthly salaries of the employees of ABC Corporation are as follows:

 Manager: Php 100 000
 Cashier: Php 20 000
 Clerk (9): Php 15 000
 Utility Workers (2): Php 8 500

 In the manager’s yearly report, the average salary of the employees is Php 20 923.08. The accountant claimed that the average monthly salary is Php 15 000.

 Both employees are correct since the average indicates the typical value of the data.

 Which of the two salaries is the average salary of the employees? Justify your answer.
Activity 13 WHICH IS TYPICAL?

Direction: Read the statements found at the right column in the table below. If you agree with the statement, place a checkmark (✔) in the After-Lesson-Response column beside it. If you don’t, mark it with (x).

<table>
<thead>
<tr>
<th>Statement</th>
<th>After-Lesson Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 is typical to the numbers 17, 25 and 30</td>
<td></td>
</tr>
<tr>
<td>6 is the typical score in the set of data 3, 5, 8, 6, 9</td>
<td></td>
</tr>
<tr>
<td>10 is a typical score in: 8, 7, 9, 10, and 6</td>
<td></td>
</tr>
<tr>
<td>18 is typical age in workers’ ages 17, 19, 20, 17, 46, 17, 18</td>
<td></td>
</tr>
<tr>
<td>5 is typical in the numbers 3, 5, 4, 5, 7, and 5</td>
<td></td>
</tr>
<tr>
<td>The mean is affected by the size of extreme values</td>
<td></td>
</tr>
<tr>
<td>The median is affected by the size of extreme values</td>
<td></td>
</tr>
<tr>
<td>The mode is affected by the size of extreme values</td>
<td></td>
</tr>
<tr>
<td>The mean is affected by the number of measures</td>
<td></td>
</tr>
<tr>
<td>The median is affected by number of measures</td>
<td></td>
</tr>
<tr>
<td>The mode is affected by the number of measures</td>
<td></td>
</tr>
</tbody>
</table>

Activity 13 LET’S SUMMARIZE!

<table>
<thead>
<tr>
<th>Who am I?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am the most commonly used measure of position.</td>
</tr>
<tr>
<td>I am the middle value in a set of data arranged in numerical order</td>
</tr>
<tr>
<td>I appear the most number of times</td>
</tr>
</tbody>
</table>

The three measures of central tendency that you have learned in the previous module do not give an adequate description of the data. We need to know how the observations spread out from the average or mean.
Lesson 2

Measures of Variability

What to Know

Provide the learners with interesting and challenging exploratory activities that will make the learner aware of what is going to happen or where the said pre-activities would lead to the basic concepts of measures of variability where they will learn to interpret, draw conclusions and make recommendations.

After these activities, the learners shall be able to answer the question, “How can I make use of the representations and descriptions of a given set of data in real-life situations?”.

Discuss to the students that both samples have the same mean, 1.00 kilogram. It is quite obvious that Company A packed ham with a more uniform content than Company B. Explain that the variability or the dispersion of the observations from the mean is less for sample A than for sample B. Therefore, in buying, we would feel more confident that the packaging we select will be closer to the advertised mean.

Measures other than the mean may provide additional information about the same data. These are the measures of dispersion.

Measures of dispersion or variability refer to the spread of the values about the mean. These are important quantities used by statisticians in evaluation. Smaller dispersion of scores arising from the comparison often indicates more consistency and more reliability.

The most commonly used measures of dispersion are the range, the average deviation, the standard deviation and the variance for ungrouped data.

Activity 1

Which Tastes Better?

A housewife surveyed canned ham for a special family affair. She picked 5 cans each from two boxes packed by company A and company B. Both boxes have the same weight. Consider the following weights in kilograms of the canned ham packed by the two companies (sample A and sample B).

Sample A: 0.97, 1.00, 0.94, 1.03, 1.11
Sample B: 1.06, 1.01, 0.88, 0.90, 1.14

Help the housewife choose the best sample by doing the following procedure.

a. Arrange the weights in numerical order.
b. Find the mean weight of each sample.
c. Analyze the spread of the weight of each sample from the mean.
d. Which sample has weights closer to the mean?
e. If you are to choose from these two samples, which would you prefer? Why?
f. Was your choice affected by the weight or the taste? Explain.
Measures other than the mean may provide additional information about the same data. These are the measures of dispersion.

Measures of dispersion or variability refer to the spread of the values about the mean. These are important quantities used by statisticians in evaluation. Smaller dispersion of scores arising from the comparison often indicates more consistency and more reliability.

The most commonly used measures of dispersion are the range, the average deviation, the standard deviation, and the variance.

The Range

The range is the simplest measure of variability. It is the difference between the largest value and the smallest value.

\[R = H - L \]

where \(R \) = Range, \(H \) = Highest value, \(L \) = Lowest value

Test scores of 10, 8, 9, 7, 5, and 3, will give us a range of 7 from \(10 - 3 = 7 \).

Let us consider this situation.

The following are the daily wages of 8 factory workers of two garment factories. Factory A and Factory B. Find the range of salaries in peso (Php).

Factory A: 400, 450, 520, 380, 492, 495, 575, 450.
Factory B: 450, 400, 450, 480, 450, 450, 400, 672

Workers of both factories have mean wage = 469
Finding the range of wages: \(\text{Range} = \text{Highest wage} - \text{Lowest wage} \)

Range A = 575 – 380 = 195
Range B = 672 – 350 = 322

Comparing the two wages, you will note that wages of workers of factory B have a higher range than wages of workers of factory A. These ranges tell us that the wages of workers of factory B are more scattered than the wages of workers of factory A.

Look closely at wages of workers of factory B. You will see that except for 672 the highest wage, the wages of the workers are more consistent than the wages in A. Without the highest wage of 672, the range would be 80 from 480 – 400 = 80. Whereas, if you exclude the highest wage 575 in A, the range would be 140 from 520 – 380 = 140.

Can you now say that the wages of workers of factory B are more scattered or variable than the wages of workers of factory A?

The range tells us that it is not a stable measure of variability because its value can fluctuate greatly even with a change in just a single value, either the highest or lowest.

Activity 2

1. a. Family A: 115.6, Family B: 115.6
 b. Range (A) = 19, Range (B) = 10
 c. Family B

2. 3. Set A: Range = 12, Median = 12
 Set B: Range = 8, Median = 8

Discuss to the learners that although the range is the easiest to compute and understand, it is not a reliable measure of dispersion. It is a poor measure of dispersion, particularly if the size of the sample or population is large. It considers only the extreme values and tells us nothing about the distribution of numbers in between.

Teacher’s Note and Reminders

1. The IQs of 5 members of 2 families A and B are:
 - Family A: 108, 112, 127, 118 and 113
 - Family B: 120, 110, 118, 120 and 110

 a. Find the mean IQ of the two families.
 b. Find the range of the IQ of both families.
 c. Which of the two families has consistent IQ?

2. The range of each of the set of scores of the three students is as follows:

<table>
<thead>
<tr>
<th></th>
<th>H = 98, L = 92, R = 98 – 92 = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ana</td>
<td></td>
</tr>
<tr>
<td>Josie</td>
<td>H = 97, L = 90, R = 97 – 90 = 7</td>
</tr>
<tr>
<td>Lina</td>
<td>H = 98, L = 89, R = 98 – 89 = 7</td>
</tr>
</tbody>
</table>

 a. What have you observed about the range of the scores of the three students?
 b. What does it tell you?
Consider the following sets of scores: Find the range and the median.

<table>
<thead>
<tr>
<th>Set B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

A. Compute the range for each set of numbers.

1. {12, 13, 17, 22, 22, 23, 25, 26}
2. {12, 13, 14, 15, 16, 17, 18}
3. {12, 12, 13, 13, 13, 13, 13, 19, 20, 20}
4. {7, 7, 8, 12, 14, 14, 14, 14, 15, 15}
5. {23, 25, 27, 27, 32, 32, 36, 38}

B. Solve the following:

1. If the range of the set of scores is 29 and the lowest score is 18, what is the highest score?
2. If the range of the set of scores is 14, and the highest score is 31, what is the lowest score?
3. The reaction times for a random sample of 9 subjects to a stimulant were recorded as 2.5, 3.6, 3.1, 4.3, 2.9, 2.3, 2.6, 4.1 and 3.4 seconds. Calculate range.
4. Two students have the following grades in six math tests. Compute the mean and the range. Tell something about the two sets of scores.

<table>
<thead>
<tr>
<th>Pete</th>
<th>Ricky</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>88</td>
</tr>
<tr>
<td>98</td>
<td>94</td>
</tr>
<tr>
<td>86</td>
<td>89</td>
</tr>
<tr>
<td>80</td>
<td>87</td>
</tr>
<tr>
<td>100</td>
<td>92</td>
</tr>
<tr>
<td>94</td>
<td>90</td>
</tr>
</tbody>
</table>
The Average Deviation

The dispersion of a set of data about the average of these data is the average deviation or mean deviation.

To compute the average deviation of an ungrouped data, we use the formula:

\[
A.D. = \frac{\sum |x - \bar{x}|}{N}
\]

where A.D. is the average deviation,
\(x\) is the individual score;
\(\bar{x}\) is the mean; and
\(N\) is the number of scores.

|\(x - \bar{x}|\) is the absolute value of the deviation from the mean.

Procedure in computing the average deviation:
1. Find the mean for all the cases.
2. Find the absolute difference between each score and the mean.
3. Find the sum of the difference and divide by \(N\).

Example:
Find the average deviation of the following data: 12, 17, 13, 18, 15, 14, 17, 11

1. Find the mean (\(\bar{x}\)).

\[
\bar{x} = \frac{\sum x}{N} = \frac{12 + 17 + 13 + 18 + 15 + 14 + 17 + 11}{9} = \frac{135}{9} = 15
\]

2. Find the absolute difference between each score and the mean.

\[
|\(x - \bar{x}| = |12 - 15| = 3 \\
= |17 - 15| = 2 \\
= |13 - 15| = 2 \\
= |18 - 15| = 3 \\
= |18 - 15| = 3 \\
= |15 - 15| = 0 \\
= |14 - 15| = 1 \\
= |17 - 15| = 2 \\
= |11 - 15| = 4
\]

3. Find the sum of the absolute difference \(\sum |x - \bar{x}|\).

\[
|\(x - \bar{x}| = |12 - 15| = 3 \\
= |17 - 15| = 2 \\
= |13 - 15| = 2 \\
= |18 - 15| = 3
\]
This can be represented in tabular form as shown below.

| x | \bar{x} | $|x-\bar{x}|$ |
|-----|-----------|---------------|
| 12 | 15 | 3 |
| 17 | 15 | 2 |
| 13 | 15 | 2 |
| 18 | 15 | 3 |
| 18 | 15 | 3 |
| 15 | 15 | 0 |
| 14 | 15 | 1 |
| 17 | 15 | 2 |
| 11 | 15 | 4 |

$\sum |x-\bar{x}| = 20$

4. Solve for the average deviation by dividing the result in step 3 by N.

$A.D. = \frac{\sum |x-\bar{x}|}{N} = \frac{20}{9} = 2.22$

Activity 4 TRY THIS!

Solve the average deviation of the following:

1. Science achievement test scores: 60, 75, 80, 85, 90, 95
2. The weights in kilogram of 10 students are: 52, 55, 50, 55, 43, 45, 40, 48, 45, 47.
3. The diameter (in cm) of balls: 12, 13, 15, 15, 15, 16, 18.

The average deviation gives a better approximation than the range. However, it does not lend itself readily to mathematical treatment for deeper analysis.

Let us do another activity to discover another measure of dispersion, the standard deviation.
The Standard Deviation

Compute the standard deviation of the set of test scores: \{39, 10, 24, 16, 19, 26, 29, 30, 5\}.

a. Find the mean.
b. Find the deviation from the mean \((x - \bar{x})\).
c. Square the deviations \((x - \bar{x})^2\).
d. Add all the squared deviations, \(\sum (x - \bar{x})^2\).
e. Tabulate the results obtained:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(x - \bar{x})</th>
<th>((x - \bar{x})^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-17</td>
<td>289</td>
</tr>
<tr>
<td>10</td>
<td>-12</td>
<td>144</td>
</tr>
<tr>
<td>16</td>
<td>-6</td>
<td>36</td>
</tr>
<tr>
<td>19</td>
<td>-3</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>49</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>39</td>
<td>17</td>
<td>289</td>
</tr>
</tbody>
</table>

\[\sum (x - \bar{x})^2 = 900\]

g. Compute the standard deviation (SD) using the formula

\[SD = \sqrt{\frac{\sum (x - \bar{x})^2}{N}}\]

g. Summarize the procedure in computing the standard deviation.

From the activity, you have learned how to compute for the standard deviation.

Like the average deviation, standard deviation differentiates sets of scores with equal averages. But the advantage of standard deviation over mean deviation is that it has several applications in inferential statistics.

To compute for the standard deviation of an ungrouped data, we use the formula:

\[SD = \sqrt{\frac{\sum (x - \bar{x})^2}{N}}\]
SD = \sqrt{\frac{\sum (x-\bar{x})^2}{N}}

Where SD is the standard deviation;
- \(x\) is the individual score;
- \(\bar{x}\) is the mean; and
- \(N\) is the number of scores.

In the next discussion, you will learn more about the importance of using the standard deviation.

Let us consider this example.

Compare the standard deviation of the scores of the three students in their Mathematics quizzes.

<table>
<thead>
<tr>
<th>Student A</th>
<th>97, 92, 96, 95, 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student B</td>
<td>94, 94, 92, 94, 96</td>
</tr>
<tr>
<td>Students C</td>
<td>95, 94, 93, 96, 92</td>
</tr>
</tbody>
</table>

Solution:

Student A:

Step 1. Compute the mean score.
\[
\bar{x} = \frac{\sum x}{N} = \frac{92 + 92 + 96 + 95 + 90}{5} = 94
\]

Step 2. Complete the table below.

<table>
<thead>
<tr>
<th></th>
<th>(x-\bar{x})</th>
<th>((x-\bar{x})^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>92</td>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td>96</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>95</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

\[\sum (x-\bar{x})^2 = 34\]

Step 3. Compute the standard deviation.
\[
SD = \sqrt{\frac{\sum (x-\bar{x})^2}{N}} = \sqrt{\frac{34}{5}} = \sqrt{6.8} = 26
\]
Student B:

Step 1. Compute the mean score.

\[\bar{x} = \frac{\sum x}{N} = \frac{92 + 92 + 96 + 95 + 90}{5} = 94 \]

Step 2. Complete the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>x - \bar{x}</th>
<th>(x - \bar{x})^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>92</td>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td>94</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>96</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

\[\sum (x - \bar{x})^2 = 8 \]

Step 3. Compute the standard deviation.

\[SD = \sqrt{\frac{\sum (x - \bar{x})^2}{N}} = \sqrt{\frac{8}{5}} = \sqrt{1.6} = 1.3 \]

Student C:

Step 1. Compute the mean score.

\[\bar{x} = \frac{\sum x}{N} = \frac{95 + 94 + 93 + 96 + 92}{5} = 94 \]

Step 2. Complete the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>x - \bar{x}</th>
<th>(x - \bar{x})^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>93</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>96</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>92</td>
<td>-2</td>
<td>4</td>
</tr>
</tbody>
</table>

\[\sum (x - \bar{x})^2 = 10 \]

Step 3. Compute the standard deviation.

\[SD = \sqrt{\frac{\sum (x - \bar{x})^2}{N}} = \sqrt{\frac{10}{5}} = \sqrt{2} = 1.4 \]
The result of the computation of the standard deviation of the scores of the three students can be summarized as:

\[
\begin{align*}
SD (A) &= 2.6 \\
SD (B) &= 1.3 \\
SD (C) &= 1.4
\end{align*}
\]

The standard deviation of the scores can be illustrated below by plotting the scores on the number line.

Graphically, a standard deviation of 2.6 means most of the scores are within 2.6 units from the mean. A standard deviation of 1.3 and 1.4 suggests that most of the scores are within 1.3 and 1.4 units from the mean.

The scores of Student B is clustered closer to the mean. This shows that the score of Student B is the most consistent among the three sets of scores.

The concept of standard deviation is especially valuable because it enables us to compare data points from different sets of data. When two groups are compared, the group having a smaller standard deviation is less varied.
WORKING IN PAIRS

Activity 6

A. Compute the standard deviation for each set of numbers.
 1. (12, 13, 14, 15, 16, 17, 18)
 2. (7, 7, 8, 12, 14, 14, 14, 14, 15, 15)
 3. (12, 12, 13, 13, 13, 13, 15, 19, 20, 20)
 4. (12, 13, 17, 22, 22, 23, 25, 26)
 5. (23, 25, 27, 32, 32, 36, 38)

B. The reaction times for a random sample of nine subjects to a stimulant were recorded as 2.5, 3.6, 3.1, 4.3, 2.9, 2.3, 2.6, 4.1 and 3.4 seconds. Calculate the range and standard deviation.

C. Suppose two classes achieved the following grades on a math test, find the range and the standard deviation.

 Class 1: 64, 70, 73, 77, 85, 90, 94
 Class 2: 74, 75, 75, 76, 79, 80, 94

You may use a scientific calculator to solve for the standard deviation.

Activity 7

The grades of a student in nine quizzes: 78, 80, 80, 82, 85, 85, 88, 90. Calculate for the mean and standard deviation using a scientific calculator.

Press the following keys:

Shift Mode (Setup) 4 (Stat) 1 (ON)

Mode 3 (Stat) 1 (1-var)
Ask the learners to compute for the variance and standard deviation of the given situation. Guide them on the process of getting the value of the variance and standard deviation.

Teacher's Note and Reminders

DON'T FORGET!

In the next discussion, you will learn about another measure of variability.

The Variance

The variance (σ^2) of a data is equal to $\frac{1}{N}$ The sum of their squares minus the square of their mean. It is virtually the square of the standard deviation.

$$\sigma^2 = \frac{\sum(x-\bar{x})^2}{N}$$

where σ^2 is the variance;

N is the total number of observations;

x is the raw score; and

\bar{x} is the mean of the data.

Variance is not only useful, it can be computed with ease and it can also be broken into two or more component sums of squares that yield useful information.
Answer Key

Activity 8

Variance of Store A = 31.5
Variance of Store B = 7 200

What to Understand

Provide the learners with activities that will allow them to reflect, revisit, revise and rethink about a variety of experiences. Moreover, the learners shall express his/her understanding of the concept of measures of variability and engage them in multidirectional self-assessment.

Answer Key

Activity 4

1. a. 4
 b. 17
 c. 14

2. a. \(\bar{x} \) (students A) = 49.125
 b. \(\bar{x} \) (students B) = 46.75

3. SD = 12.67

4. a. SD Jean = 1.62
 b. both students
 c. both students

Teacher’s Note and Reminders

Don’t forget!
3. The minimum distances (in feet) a batter has to hit the ball down the center of the field to get a home run in 8 different stadiums is 410, 420, 406, 400, 440, 421, 402 and 425 ft. Compute for the standard deviation.

4. The scores received by Jean and Jack in ten math quizzes are as follows:
 Jean: 4, 5, 3, 2, 2, 5, 5, 3, 5, 0
 Jack: 5, 4, 4, 3, 1, 4, 0, 5, 5
 a. Compute for the standard deviation.
 b. Which student had the better grade point average?
 c. Which student has the most consistent score?
Lesson 3
Measures of Central Tendency of Grouped Data

What to Know

Let the learners recall the concepts about summation notation. Ask them to answer Activity 1.

Activity 1

A.
1. \(4X_1 + 4X_2 + 4X_3 + 4X_4 + 4X_5 + 4X_6\)
2. \((Y_2 - 5) + (Y_3 - 5) + (Y_4 - 5) + (Y_5 - 5)\)
3. \((X_1 + 2Y_1) + (X_2 + 2Y_2) + (X_3 + 2Y_3) + (X_5 + 2Y_5)\)

B.
1. 14
2. 0
3. 37
4. 60
4. -79

What to Know

Provide the learners opportunity to use different statistical terms they encountered in the previous lessons by doing Activity 2. Also, give them a chance to realize the importance of the activity in real-life situations. Ask them to answer the necessary questions in the activity.

Activity 1

DO YOU STILL REMEMBER THIS?

Directions:
A. Write the following expressions in expanded form:
1. \(\sum_{i=1}^{4} 4x_i\)
2. \(\sum_{i=2}^{5} (Y_i - 5)\)
3. \(\sum_{i=1}^{4} (X_i + 2Y_i)\)

B. Evaluate the following expressions using the given data:

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>5</th>
<th>-2</th>
<th>-1</th>
<th>7</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_i)</td>
<td>1</td>
<td>6</td>
<td>-4</td>
<td>-3</td>
<td>-5</td>
</tr>
</tbody>
</table>

1. \(\sum_{i=2}^{5} (5 - X_i)\)
2. \(\sum_{i=1}^{4} \frac{2}{x_i - y_i}\)
3. \(\sum_{i=1}^{5} Y_i\)
4. \(\sum_{i=1}^{4} (3Y_i - X_i^2)\)

Questions

1. How did you find the given activity?
2. Have you applied your previous knowledge about summation notation?
Activity 2

A. Scores of Grade 8 Section Avocado Students in the 4th Periodic Test in Mathematics

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
<th>Class Mark</th>
<th>fX</th>
<th>Less Than Cumulative Frequency ($<cf$)</th>
<th>Lower Class Boundary (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 – 50</td>
<td>2</td>
<td>48</td>
<td>96</td>
<td>50</td>
<td>45.5</td>
</tr>
<tr>
<td>41 – 45</td>
<td>9</td>
<td>43</td>
<td>387</td>
<td>48</td>
<td>40.5</td>
</tr>
<tr>
<td>36 – 40</td>
<td>13</td>
<td>38</td>
<td>494</td>
<td>39</td>
<td>35.5</td>
</tr>
<tr>
<td>31 – 35</td>
<td>11</td>
<td>33</td>
<td>363</td>
<td>26</td>
<td>30.5</td>
</tr>
<tr>
<td>26 – 30</td>
<td>10</td>
<td>28</td>
<td>280</td>
<td>15</td>
<td>25.5</td>
</tr>
<tr>
<td>21 – 25</td>
<td>5</td>
<td>23</td>
<td>115</td>
<td>5</td>
<td>20.5</td>
</tr>
<tr>
<td>$i = 5$</td>
<td>$\Sigma f = 50$</td>
<td></td>
<td>$\Sigma (fX) = 1,735$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Ages of San Pedro Jose High School Teachers

<table>
<thead>
<tr>
<th>Age</th>
<th>f</th>
<th>X</th>
<th>fX</th>
<th>$<cf$</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 – 25</td>
<td>5</td>
<td>63</td>
<td>315</td>
<td>80</td>
<td>60.5</td>
</tr>
<tr>
<td>26 – 30</td>
<td>8</td>
<td>58</td>
<td>464</td>
<td>75</td>
<td>55.5</td>
</tr>
<tr>
<td>31 – 35</td>
<td>8</td>
<td>53</td>
<td>424</td>
<td>67</td>
<td>50.5</td>
</tr>
<tr>
<td>36 – 40</td>
<td>11</td>
<td>48</td>
<td>528</td>
<td>59</td>
<td>45.5</td>
</tr>
<tr>
<td>41 – 45</td>
<td>15</td>
<td>43</td>
<td>645</td>
<td>48</td>
<td>40.5</td>
</tr>
<tr>
<td>46 – 50</td>
<td>14</td>
<td>38</td>
<td>532</td>
<td>33</td>
<td>35.5</td>
</tr>
<tr>
<td>51 – 55</td>
<td>12</td>
<td>33</td>
<td>396</td>
<td>19</td>
<td>30.5</td>
</tr>
<tr>
<td>56 – 60</td>
<td>5</td>
<td>28</td>
<td>140</td>
<td>7</td>
<td>25.5</td>
</tr>
<tr>
<td>61 – 65</td>
<td>2</td>
<td>23</td>
<td>46</td>
<td>2</td>
<td>20.5</td>
</tr>
<tr>
<td>$i = 5$</td>
<td>$\Sigma f = 80$</td>
<td></td>
<td>$\Sigma (fX) = 3,490$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions

1. How did you determine the unknown values in the frequency distribution table?
2. What is the class size?
3. What is the class mark of the class with the highest frequency?
4. In each frequency distribution table, determine the following:
 a. Median class
 b. Cumulative frequency of the median class
 c. Modal class
 d. Lower boundary of the modal class
5. Find the following measures in each data set:
 a. Mean
 b. Median
 c. Mode

Let the learners answer Activity 2. By this time they will be asked to complete the necessary information needed in the given table to answer the questions below.

Activity 3

<table>
<thead>
<tr>
<th>Height (in cm)</th>
<th>Frequency</th>
<th>X</th>
<th>fX</th>
<th><cf</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>170-174</td>
<td>8</td>
<td>172</td>
<td>1,376</td>
<td>50</td>
<td>169.5</td>
</tr>
<tr>
<td>165-169</td>
<td>18</td>
<td>167</td>
<td>2,826</td>
<td>42</td>
<td>164.5</td>
</tr>
<tr>
<td>160-164</td>
<td>13</td>
<td>162</td>
<td>2,106</td>
<td>24</td>
<td>159.5</td>
</tr>
<tr>
<td>155-159</td>
<td>7</td>
<td>157</td>
<td>1,099</td>
<td>11</td>
<td>154.5</td>
</tr>
<tr>
<td>150-154</td>
<td>4</td>
<td>152</td>
<td>608</td>
<td>4</td>
<td>149.5</td>
</tr>
<tr>
<td>i = 5</td>
<td>Σf = 50</td>
<td>Σ(fX) = 8,015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questions

1. 50
2. 8,015
3. Just divide Σ(fX) and Σf
4. 160.3
5. a. 165-169 because the value of n/2 which is 25 falls in <cf 42.
 b. 160-164 because it is a class having a higher frequency
 c. 164.5
 d. 159.5
6. Median = 169.5 Mode = 161.77
7. Answers vary
Teacher's Note and Reminders

Before the learners perform the next activities, let them read and understand some important notes on measures of central tendency for grouped data. Tell them to study carefully the examples presented.

What to Process

Before we proceed in finding the mean, median and mode of grouped data, let us recall the concepts about Summation Notation:

Summation Notation

It is denoted by the symbol using the Greek letter \(\sum \) (a capital sigma) which means “the summation of”.

The summation notation can be expressed as:

\[
\sum_{i=1}^{n} X_i = X_1 + X_2 + X_3 + \ldots + X_n
\]

and it can be read as “the summation of \(X \) sub \(i \) where \(i \) starts from 1 to \(n \).

Illustrative Example:

1. Write the expression in expanded form:

a. \[
 \sum_{i=1}^{5} 2X_i = 2X_1 + 2X_2 + 2X_3 + 2X_4 + 2X_5 = 2(X_1 + X_2 + X_3 + X_4 + X_5)
 \]

b. \[
 \sum_{i=2}^{5} (2X_i - Y_i) = (2X_2 - Y_2) + (2X_3 - Y_3) + (2X_4 - Y_4) + (2X_5 - Y_5)
 \]
To find the mean, median and mode for grouped data, take note of the following:

1. **Mean for Grouped Data**

 When the number of items in a set of data is too big, items are grouped for convenience. To find the mean of grouped data using class marks, the following formula can be used:

 \[
 \text{Mean} = \frac{\sum (fX)}{\sum f}
 \]

 where:

 - \(f\) is the frequency of each class
 - \(X\) is the class mark of class

 Illustrative Example:

 Directions: Calculate the mean of the Mid-year Test scores of Students in Filipino.

 Mid-year Test Scores of Students in Filipino

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 – 45</td>
<td>1</td>
</tr>
<tr>
<td>36 – 40</td>
<td>8</td>
</tr>
<tr>
<td>31 – 35</td>
<td>8</td>
</tr>
<tr>
<td>26 – 30</td>
<td>14</td>
</tr>
<tr>
<td>21 – 25</td>
<td>7</td>
</tr>
<tr>
<td>16 – 20</td>
<td>2</td>
</tr>
</tbody>
</table>

 Solutions:

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
<th>Class Mark</th>
<th>(fX)\</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 – 45</td>
<td>1</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>36 – 40</td>
<td>8</td>
<td>38</td>
<td>304</td>
</tr>
<tr>
<td>31 – 35</td>
<td>8</td>
<td>33</td>
<td>264</td>
</tr>
<tr>
<td>26 – 30</td>
<td>14</td>
<td>28</td>
<td>392</td>
</tr>
<tr>
<td>21 – 25</td>
<td>7</td>
<td>23</td>
<td>161</td>
</tr>
<tr>
<td>16 – 20</td>
<td>2</td>
<td>18</td>
<td>36</td>
</tr>
</tbody>
</table>

 \[i = 5\]
 \[\sum f = 40\]
 \[\sum (fX) = 1,200\]

 \[
 \text{Mean} = \frac{\sum (fX)}{\sum f} = \frac{1,200}{40} = 30
 \]

 Therefore, the mean of Mid-year test is **30**.
There is an alternative formula for computing the mean of grouped data and this makes use of coded deviation

\[
\text{Mean} = A.M. + \frac{\sum(fd)}{\sum f}
\]

where: A.M. is the assumed mean;
\(f \) is the frequency of each class;
\(d \) is the coded deviation from A.M.; and
\(i \) is the class interval

Any class mark can be considered as the assumed mean. But it is convenient to choose the class mark with the highest frequency to facilitate computation. The class chosen to contain as the A.M. has no deviation from itself and so 0 is assigned to it.

Subsequently, similar on a number line or Cartesian coordinate system, consecutive positive integers are assigned to the classes upward and negative integers to the classes downward.

Let us find the mean of the given illustrative example about the Mid-year test scores of Students in Filipino using coded deviation.

Illustrative Example:

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 – 45</td>
<td>1</td>
</tr>
<tr>
<td>36 – 40</td>
<td>8</td>
</tr>
<tr>
<td>31 – 35</td>
<td>8</td>
</tr>
<tr>
<td>26 – 30</td>
<td>14</td>
</tr>
<tr>
<td>21 – 25</td>
<td>7</td>
</tr>
<tr>
<td>16 – 20</td>
<td>2</td>
</tr>
</tbody>
</table>

Solutions:

<table>
<thead>
<tr>
<th>Score</th>
<th>(f)</th>
<th>(X)</th>
<th>(d)</th>
<th>(fd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 – 45</td>
<td>1</td>
<td>43</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>36 – 40</td>
<td>8</td>
<td>38</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>31 – 35</td>
<td>8</td>
<td>33</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>26 – 30</td>
<td>14</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21 – 25</td>
<td>7</td>
<td>23</td>
<td>-1</td>
<td>-7</td>
</tr>
<tr>
<td>16 – 20</td>
<td>2</td>
<td>18</td>
<td>-2</td>
<td>-4</td>
</tr>
</tbody>
</table>

\(i = 5 \)
\(\sum f = 40 \)
\(\sum fd = 16 \)
Mean = A.M + \frac{\sum fd}{\sum f}

\begin{align*}
\text{A.M.} &= 28 \\
\sum f &= 40 \\
\sum fd &= 16
\end{align*}

\begin{align*}
\text{Mean} &= 28 + \frac{16}{40} \\
\text{Mean} &= 28 + \frac{16(5)}{40} \\
\text{Mean} &= 28 + \frac{80}{40} \\
\text{Mean} &= 28 + 2 \\
\text{Mean} &= 30
\end{align*}

Therefore, the mean of Mid-year test is 30.

What have you observed? It implies that even you use class marks or coded deviation the results that you will get are the same.

2. Median for Grouped Data

The median is the middle value in a set of quantities. It separates an ordered set of data into two equal parts. Half of the quantities is located above the median and the other half is found below it, whenever the quantities are arranged according to magnitude (from highest to lowest.)

In computing for the median of grouped data, the following formula is used:

\[
\text{Median} = lb + \left(\frac{\frac{N}{2} - cf}{f} \right) i
\]

where:
- \(lb\) is the lower boundary of the median class;
- \(f\) is the frequency of each class;
- \(cf\) is the cumulative frequency of the lower class next to the median class;
- \(f_{mc}\) is the frequency of the median class; and
- \(i\) is the class interval.

The median class is the class that contains the \(\frac{N}{2}\) quantity. The computed median must be within the median class.
Illustrative Example:

Directions: Calculate the median of the Mid-year Test Scores of students in Filipino.

Mid-year Test Scores of Students in Filipino

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 – 45</td>
<td>1</td>
</tr>
<tr>
<td>36 – 40</td>
<td>8</td>
</tr>
<tr>
<td>31 – 35</td>
<td>8</td>
</tr>
<tr>
<td>26 – 30</td>
<td>14</td>
</tr>
<tr>
<td>21 – 25</td>
<td>7</td>
</tr>
<tr>
<td>16 – 20</td>
<td>2</td>
</tr>
</tbody>
</table>

Solutions:

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
<th>lb</th>
<th>$<cf$</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 – 45</td>
<td>1</td>
<td>40.5</td>
<td>40</td>
</tr>
<tr>
<td>36 – 40</td>
<td>8</td>
<td>35.5</td>
<td>39</td>
</tr>
<tr>
<td>31 – 35</td>
<td>8</td>
<td>30.5</td>
<td>31</td>
</tr>
<tr>
<td>26 – 30</td>
<td>14</td>
<td>25.5</td>
<td>23</td>
</tr>
<tr>
<td>21 – 25</td>
<td>7</td>
<td>20.5</td>
<td>9</td>
</tr>
<tr>
<td>16 – 20</td>
<td>2</td>
<td>15.5</td>
<td>2</td>
</tr>
</tbody>
</table>

$i = 5 \quad \sum f = 40$

Median = $lb_m + \left(\frac{\sum f - <cf}{f_m} \right) \cdot i$

a. $\frac{\sum f}{2} = \frac{40}{2} = 20$

The 20th score is contained in the class 26-30. This means that the median falls within the class boundaries of 26-30. That is, 25.5-30.5

b. $<cf = 9$

c. $f_m = 14$

d. $lb_m = 25.5$

e. $i = 5$

Solutions:

Median = $lb_m + \left(\frac{\sum f - <cf}{f_m} \right) \cdot i$

$$\text{Median} = 25.5 + \left(\frac{20 - 9}{14} \right) \cdot 5$$
Therefore, the median of the Mid-year test scores is 25.88.

(Note: The median 25.88 falls within the class boundaries of 26-30 which is 25.5-30.5)

3. **Mode for Grouped Data**

The mode of grouped data can be approximated using the following formula:

 \[\text{Mode} = lb_{mo} + \frac{D_1}{D_1 + D_2} \times i \]

 where:
 - \(lb_{mo} \) is the lower boundary of the modal class;
 - \(D_1 \) is the difference between the frequencies of the modal class and the next upper class;
 - \(D_2 \) is the difference between the frequencies of the modal class and the next lower class; and
 - \(i \) is the class interval.

 The modal class is the class with the highest frequency.

Illustrative Example:

Directions: Calculate the mode of the Mid-year Test Scores of Students in Filipino.

Mid-year Test Scores of Students in Filipino

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 – 45</td>
<td>1</td>
</tr>
<tr>
<td>36 – 40</td>
<td>8</td>
</tr>
<tr>
<td>31 – 35</td>
<td>8</td>
</tr>
<tr>
<td>26 – 30</td>
<td>14</td>
</tr>
<tr>
<td>21 – 25</td>
<td>7</td>
</tr>
<tr>
<td>16 – 20</td>
<td>2</td>
</tr>
</tbody>
</table>
Teacher's Note and Reminders

Solutions:

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 – 45</td>
<td>1</td>
<td>40.5</td>
</tr>
<tr>
<td>36 – 40</td>
<td>8</td>
<td>35.5</td>
</tr>
<tr>
<td>31 – 35</td>
<td>8</td>
<td>30.5</td>
</tr>
<tr>
<td>26 – 30</td>
<td>14</td>
<td>25.5</td>
</tr>
<tr>
<td>21 – 25</td>
<td>7</td>
<td>20.5</td>
</tr>
<tr>
<td>16 – 20</td>
<td>2</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Since class 26-30 has the highest frequency, therefore the modal class is 26-30.

\[l_{\text{lower}} = 25.5 \]
\[D_1 = 14 - 8 = 6 \]
\[D_2 = 14 - 7 = 7 \]
\[i = 5 \]

Mode = 25.5 + \[\frac{D_1}{D_1 + D_2} \cdot i \]
Mode = 25.5 + \[\frac{6}{6+7} \cdot 5 \]
Mode = 25.5 + \[\frac{7}{13} \cdot 5 \]
Mode = 25.5 + \[\frac{35}{13} \]
Mode = 25.5 + 2.69

Mode = 28.19

Therefore, the mode of the Mid-year test is 28.19.

If there are two or more classes having the same highest frequency, the formula to be used is:

\[\text{Mode} = 3(\text{Median}) - 2(\text{Mean}) \]
Illustrative Example:

Height of Nursing Students in Our Lady of Piat College

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>170-174</td>
<td>7</td>
</tr>
<tr>
<td>165-169</td>
<td>10</td>
</tr>
<tr>
<td>160-164</td>
<td>11</td>
</tr>
<tr>
<td>155-159</td>
<td>11</td>
</tr>
<tr>
<td>150-154</td>
<td>10</td>
</tr>
</tbody>
</table>

(Note: The given data has two classes with the highest frequency; therefore, the first formula in solving the mode is not applicable.)

Solutions:

a. **Mean**

\[
\text{Mean} = \frac{\sum(fX)}{\sum f} = \frac{8,075}{50} = 161.5
\]

b. **Median**

\[
\sum f = 50 \quad \text{and} \quad \frac{2}{2} = 25
\]

The 25th score is contained in the class 160-164. This means that the median falls within the class boundaries of 160-164. That is, 159.5-164.5

\[
\begin{align*}
<cf &= 21 \\
\sum f &= 11 \\
\frac{25}{11} &= 21 \\
i &= 5
\end{align*}
\]

\[
\text{Median} = lb + \left(\frac{\sum f - <cf}{fmc} \right) i
\]

\[
\text{Median} = 159.5 + \left(\frac{25 - 21}{11} \right) 5 = 161.32
\]

Teacher's Note and Reminders
c. Mode
Mode = 3(Median) − 2(Mean)
Mode = 3(161.32) − 2(161.5)
Mode = 483.96 − 323
Mode = 160.36

Therefore, the mode of the given data is 160.36.

Activity 4

Directions: Calculate the mean, median and mode of the weight of IV-2 Students. Write your complete solutions and answers in a sheet of paper.

Weight of IV-2 Students

<table>
<thead>
<tr>
<th>Weight in kg</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 – 79</td>
<td>1</td>
</tr>
<tr>
<td>70 – 74</td>
<td>4</td>
</tr>
<tr>
<td>65 – 69</td>
<td>10</td>
</tr>
<tr>
<td>60 – 64</td>
<td>14</td>
</tr>
<tr>
<td>55 – 59</td>
<td>21</td>
</tr>
<tr>
<td>50 – 54</td>
<td>15</td>
</tr>
<tr>
<td>45 – 69</td>
<td>14</td>
</tr>
<tr>
<td>40 – 44</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\sum f = 80 \quad \sum fX = 4,580 \]

Mean = 57.25

Median = 56.88

Mode = 57.19

Question

1. Answers Vary
2. Answers Vary
3. Answers Vary

Teacher’s Note and Reminders

1. How did you find the mean, median, and mode of the data set?
2. What comparisons can you make about the three measures obtained?
3. What have you learned and realized while doing the activity?
In Activity 5, let the learners apply in real-life situations the concepts about measures of central tendency for grouped data. Give them a chance to answer the questions below the given activity.

Have you solved the mean, median, and mode easily with your partner? Were you able to apply the notes on how to calculate the mean, median and mode? Do the next activity by yourself.

Activity 5

Pledges for the Victims of Typhoon Pablo

<table>
<thead>
<tr>
<th>Pledges in Pesos</th>
<th>Frequency</th>
<th>X</th>
<th>fX</th>
<th>lb</th>
<th><cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,000 – 9,999</td>
<td>4</td>
<td>9,499.5</td>
<td>37,998</td>
<td>8,999.5</td>
<td>200</td>
</tr>
<tr>
<td>8,000 – 8,999</td>
<td>12</td>
<td>8,499.5</td>
<td>101,994</td>
<td>7,999.5</td>
<td>196</td>
</tr>
<tr>
<td>7,000 – 7,999</td>
<td>13</td>
<td>7,499.5</td>
<td>97,493.5</td>
<td>6,999.5</td>
<td>184</td>
</tr>
<tr>
<td>6,000 – 6,999</td>
<td>15</td>
<td>6,499.5</td>
<td>97,492.5</td>
<td>5,999.5</td>
<td>171</td>
</tr>
<tr>
<td>5,000 – 5,999</td>
<td>19</td>
<td>5,499.5</td>
<td>104,490.5</td>
<td>4,999.5</td>
<td>156</td>
</tr>
<tr>
<td>4,000 – 4,999</td>
<td>30</td>
<td>4,499.5</td>
<td>134,985</td>
<td>3,999.5</td>
<td>137</td>
</tr>
<tr>
<td>3,000 – 3,999</td>
<td>21</td>
<td>3,499.5</td>
<td>73,489.5</td>
<td>2,999.5</td>
<td>107</td>
</tr>
<tr>
<td>2,000 – 2,999</td>
<td>41</td>
<td>2,499.5</td>
<td>102,479.5</td>
<td>1,999.5</td>
<td>86</td>
</tr>
<tr>
<td>1,000 – 1,999</td>
<td>31</td>
<td>1,499.5</td>
<td>46,484.5</td>
<td>999.5</td>
<td>45</td>
</tr>
<tr>
<td>0 – 999</td>
<td>14</td>
<td>499.5</td>
<td>6,993</td>
<td>-0.5</td>
<td>14</td>
</tr>
</tbody>
</table>

Answer Key

Question

1. 1,000
2. 200
3. a. 2,499.5
 b. 3,000 - 3,999
 c. 2,000 - 2,999
4. Answers vary
5. 2,999.5
6. 1,999.5
7. 2,002.83

Activity 5 ONE MORE TRY...

Directions: Calculate the mean, median and mode of the given grouped data.

<table>
<thead>
<tr>
<th>Pledges in Pesos</th>
<th>Frequency</th>
<th>X</th>
<th>fX</th>
<th>lb</th>
<th><cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,000 – 9,999</td>
<td>4</td>
<td>9,499.5</td>
<td>37,998</td>
<td>8,999.5</td>
<td>200</td>
</tr>
<tr>
<td>8,000 – 8,999</td>
<td>12</td>
<td>8,499.5</td>
<td>101,994</td>
<td>7,999.5</td>
<td>196</td>
</tr>
<tr>
<td>7,000 – 7,999</td>
<td>13</td>
<td>7,499.5</td>
<td>97,493.5</td>
<td>6,999.5</td>
<td>184</td>
</tr>
<tr>
<td>6,000 – 6,999</td>
<td>15</td>
<td>6,499.5</td>
<td>97,492.5</td>
<td>5,999.5</td>
<td>171</td>
</tr>
<tr>
<td>5,000 – 5,999</td>
<td>19</td>
<td>5,499.5</td>
<td>104,490.5</td>
<td>4,999.5</td>
<td>156</td>
</tr>
<tr>
<td>4,000 – 4,999</td>
<td>30</td>
<td>4,499.5</td>
<td>134,985</td>
<td>3,999.5</td>
<td>137</td>
</tr>
<tr>
<td>3,000 – 3,999</td>
<td>21</td>
<td>3,499.5</td>
<td>73,489.5</td>
<td>2,999.5</td>
<td>107</td>
</tr>
<tr>
<td>2,000 – 2,999</td>
<td>41</td>
<td>2,499.5</td>
<td>102,479.5</td>
<td>1,999.5</td>
<td>86</td>
</tr>
<tr>
<td>1,000 – 1,999</td>
<td>31</td>
<td>1,499.5</td>
<td>46,484.5</td>
<td>999.5</td>
<td>45</td>
</tr>
<tr>
<td>0 – 999</td>
<td>14</td>
<td>499.5</td>
<td>6,993</td>
<td>-0.5</td>
<td>14</td>
</tr>
</tbody>
</table>

\[
\sum f = 200 \quad \sum fX = 803,900
\]

1. What is the class interval of the given frequency distribution table?
2. How many pledges are there for the victims of typhoon?
3. Determine the following:
 a. Class mark of the pledges having the highest number of donors
 b. Median class
 c. Modal class
4. How did you determine the mean, median, and the mode of the given data set?
 How about the lower boundary of the median class of the pledges?
5. What is the lower boundary of the median class of the pledges in pesos?
6. What is the lower boundary of the modal class?
7. What is the modal score of the pledges in pesos?
Have learners take a closer look at some aspects of measures of central tendency for grouped data. Provide them opportunities to think deeper and test further their understanding of the lesson by doing Activity 6.

Activity 6

1. Below are the scores of 65 students in a Mathematics Test.

<table>
<thead>
<tr>
<th>Score</th>
<th>f</th>
<th>X</th>
<th>d</th>
<th>fd</th>
<th><cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 – 58</td>
<td>2</td>
<td>56.5</td>
<td>6</td>
<td>12</td>
<td>65</td>
</tr>
<tr>
<td>51 – 54</td>
<td>4</td>
<td>52.5</td>
<td>5</td>
<td>20</td>
<td>63</td>
</tr>
<tr>
<td>47 – 50</td>
<td>5</td>
<td>48.5</td>
<td>4</td>
<td>20</td>
<td>59</td>
</tr>
<tr>
<td>43 – 46</td>
<td>6</td>
<td>44.5</td>
<td>3</td>
<td>18</td>
<td>54</td>
</tr>
<tr>
<td>39 – 42</td>
<td>10</td>
<td>40.5</td>
<td>2</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td>35 – 38</td>
<td>13</td>
<td>36.5</td>
<td>1</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>31 – 34</td>
<td>8</td>
<td>32.5</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>27 – 30</td>
<td>6</td>
<td>28.5</td>
<td>-1</td>
<td>-6</td>
<td>17</td>
</tr>
<tr>
<td>23 – 26</td>
<td>6</td>
<td>24.5</td>
<td>-2</td>
<td>-12</td>
<td>11</td>
</tr>
<tr>
<td>19 – 22</td>
<td>2</td>
<td>20.5</td>
<td>-3</td>
<td>-6</td>
<td>5</td>
</tr>
<tr>
<td>15 – 18</td>
<td>2</td>
<td>16.5</td>
<td>-4</td>
<td>-8</td>
<td>3</td>
</tr>
<tr>
<td>11 – 14</td>
<td>1</td>
<td>12.5</td>
<td>-5</td>
<td>-5</td>
<td>1</td>
</tr>
</tbody>
</table>

\[i = 4 \quad \sum f = 65 \quad \sum d = 66\]

- a. Answers Vary
- b. Mean = 36.56 Median = 36.81 Mode = 36.00
- c. Answers Vary
- d. Answers Vary

2. Answers Vary

3. Answers Vary

Answer Key

Activity 6 WE CAN DO IT...

1. Below are the scores of 65 students in a Mathematics Test.

<table>
<thead>
<tr>
<th>Score</th>
<th>f</th>
<th>X</th>
<th>d</th>
<th>fd</th>
<th><cf</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 – 58</td>
<td>2</td>
<td>56.5</td>
<td>6</td>
<td>12</td>
<td>65</td>
</tr>
<tr>
<td>51 – 54</td>
<td>4</td>
<td>52.5</td>
<td>5</td>
<td>20</td>
<td>63</td>
</tr>
<tr>
<td>47 – 50</td>
<td>5</td>
<td>48.5</td>
<td>4</td>
<td>20</td>
<td>59</td>
</tr>
<tr>
<td>43 – 46</td>
<td>6</td>
<td>44.5</td>
<td>3</td>
<td>18</td>
<td>54</td>
</tr>
<tr>
<td>39 – 42</td>
<td>10</td>
<td>40.5</td>
<td>2</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td>35 – 38</td>
<td>13</td>
<td>36.5</td>
<td>1</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>31 – 34</td>
<td>8</td>
<td>32.5</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>27 – 30</td>
<td>6</td>
<td>28.5</td>
<td>-1</td>
<td>-6</td>
<td>17</td>
</tr>
<tr>
<td>23 – 26</td>
<td>6</td>
<td>24.5</td>
<td>-2</td>
<td>-12</td>
<td>11</td>
</tr>
<tr>
<td>19 – 22</td>
<td>2</td>
<td>20.5</td>
<td>-3</td>
<td>-6</td>
<td>5</td>
</tr>
<tr>
<td>15 – 18</td>
<td>2</td>
<td>16.5</td>
<td>-4</td>
<td>-8</td>
<td>3</td>
</tr>
<tr>
<td>11 – 14</td>
<td>1</td>
<td>12.5</td>
<td>-5</td>
<td>-5</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\sum f = 65 \quad \sum d = 66\]

- a. Complete the table by filling in the values of X (the class marks or midpoints), d (deviation), fd and <cf (cumulative frequency). Explain how you arrived at your answer.
- b. Find the mean, median, and the mode of the set of data.
- c. How would you compare the mean, median, and the mode of the set of data?
- d. Which measure best represents the average of the set of data? Why?

2. Answers Vary

3. Answers Vary
In Activity 7, let the learners gather data from their classmates regarding power-saving measures. Ask them to apply different concepts about measures of central tendency and use the rubric on group task for rating their classmates’ work.

What to Transfer

Your goal in this section is to apply your learning to real-life situations. You will be given a practical task which will demonstrate your understanding of solving measures of central tendency of grouped data.

Activity 7

Prepare some power saving measures. Gather data from your classmates or peers which may include the following: electric bills, electric appliances and the estimated time of usage. Use the data and different statistical measures obtained for analysis and coming up with the power-saving measures.

RUBRIC ON GROUP TASK

<table>
<thead>
<tr>
<th>Understanding of Task</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/we demonstrated an in-depth understanding of the content, processes, and demands of the task.</td>
<td>I/we demonstrated substantial understanding of the content and task, even though some supporting ideas or details may be overlooked or misunderstood.</td>
<td>I/we demonstrated gaps in our understanding of the content and task.</td>
<td>I/we demonstrated minimal understanding of the content.</td>
<td></td>
</tr>
</tbody>
</table>

Teacher’s Note and Reminders
<table>
<thead>
<tr>
<th>Teacher's Note and Reminders</th>
</tr>
</thead>
</table>

Completion of Task

| I/we fully achieved the purpose of the task, including thoughtful, insightful interpretations and conjectures. | I/we accomplished the task. | I/we completed most of the assignment. | I/we attempted to accomplish the task, but with little or no success. |

Communication of Findings

| I/we communicated our ideas and findings effectively, raised interesting and provocative questions, and went beyond what was expected. | I/we communicated our findings effectively. | I/we communicated our ideas and findings. | I/we did not finish the investigation and/or were not able to communicate our ideas very well. |

Group Process

| We used all of our time productively. Everyone was involved and contributed to the group process and product. | We worked well together most of the time. We usually listened to each other and used each other's ideas. | We worked together some of the time. Not everyone contributed equal efforts to the task. | We really did not pull together or work very productively as a group. Not everyone contributed to the group effort. |

Problem Solving

| Problems did not deter us. We were proactive and worked together to solve problems. | We worked together to overcome problems we encountered. | We might have worked more productively as a group. | Some people did more work than others. OR Nobody worked very well in the group. |

Adopted from Intel Teach Elements (Assessment on 21st Century Classroom)
In this section, your tasks were to cite real-life situations and formulate and solve problems involving measures of central tendency of grouped data.

How did you find the performance task? How did the task help you see the real-world application of measures of central tendency of grouped data?

Summary/Synthesis/Generalization:

This lesson was about measures of central tendency of grouped data. The lesson provided you opportunities to describe on how to solve mean, median and mode of the given grouped data. Moreover, you were given the chance to apply the given important notes on how to solve the mean, median and mode of the given grouped data and to demonstrate your understanding of the lesson by doing a practical task.
Lesson 4

Measures of Variability of Grouped Data

What to Know

Let the learners complete the given frequency distribution table. Guide the students how to solve other parts of the table and inform them to complete the table.

Answer Key

Activity 1

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency (f)</th>
<th>Class Mark (X)</th>
<th>fX</th>
<th>(X - \overline{X})</th>
<th>(X - \overline{X})^2</th>
<th>f(X - \overline{X})^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 – 50</td>
<td>2</td>
<td>48</td>
<td>96</td>
<td>13.7</td>
<td>187.69</td>
<td>375.38</td>
</tr>
<tr>
<td>41 – 45</td>
<td>9</td>
<td>43</td>
<td>387</td>
<td>8.7</td>
<td>75.69</td>
<td>681.21</td>
</tr>
<tr>
<td>36 – 40</td>
<td>13</td>
<td>38</td>
<td>494</td>
<td>3.7</td>
<td>13.69</td>
<td>177.97</td>
</tr>
<tr>
<td>31 – 35</td>
<td>11</td>
<td>33</td>
<td>363</td>
<td>-1.3</td>
<td>1.69</td>
<td>18.59</td>
</tr>
<tr>
<td>26 – 30</td>
<td>10</td>
<td>28</td>
<td>260</td>
<td>-6.3</td>
<td>39.69</td>
<td>396.9</td>
</tr>
<tr>
<td>21 – 25</td>
<td>5</td>
<td>23</td>
<td>115</td>
<td>-11.3</td>
<td>127.69</td>
<td>638.45</td>
</tr>
<tr>
<td>Σf = 50</td>
<td>ΣfX = 1,715</td>
<td>Σf(X - \overline{X})^2 = 2,288.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Answers Vary
2. 5
3. 1,735
4. 34.7
5. 50.5
6. 20.5
7. 30
8. 46.54
9. Answer Vary
10. by extracting the square root of the variance

What to Know

Start the lesson by assessing your knowledge of the different mathematics concepts previously studied and your skills in performing mathematical operations. These knowledge and skills may help you in understanding Measures of Variability of Grouped Data. As you go through this lesson, think of the following important question: **How are the measures of variability of grouped data used in solving real-life problems and in making decisions?** To find out the answer, perform each activity. If you find any difficulty in answering the exercises, seek the assistance of your teacher or peers or refer to the modules you have gone over earlier.

Activity 1 LET'S TRY THIS!

Directions: Complete the frequency distribution table by finding the unknown values. Write your complete solutions and answers on a piece of paper.

Scores of Grade 8 Avocado Students in the 4th Periodic Test in Mathematics

<table>
<thead>
<tr>
<th>Score</th>
<th>Frequency (f)</th>
<th>Class Mark (X)</th>
<th>fX</th>
<th>(X - \overline{X})</th>
<th>(X - \overline{X})^2</th>
<th>f(X - \overline{X})^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 – 50</td>
<td>2</td>
<td>48</td>
<td>96</td>
<td>13.7</td>
<td>187.69</td>
<td>375.38</td>
</tr>
<tr>
<td>41 – 45</td>
<td>9</td>
<td>43</td>
<td>387</td>
<td>8.7</td>
<td>75.69</td>
<td>681.21</td>
</tr>
<tr>
<td>36 – 40</td>
<td>13</td>
<td>38</td>
<td>494</td>
<td>3.7</td>
<td>13.69</td>
<td>177.97</td>
</tr>
<tr>
<td>31 – 35</td>
<td>11</td>
<td>33</td>
<td>363</td>
<td>-1.3</td>
<td>1.69</td>
<td>18.59</td>
</tr>
<tr>
<td>26 – 30</td>
<td>10</td>
<td>28</td>
<td>260</td>
<td>-6.3</td>
<td>39.69</td>
<td>396.9</td>
</tr>
<tr>
<td>21 – 25</td>
<td>5</td>
<td>23</td>
<td>115</td>
<td>-11.3</td>
<td>127.69</td>
<td>638.45</td>
</tr>
<tr>
<td>Σf =</td>
<td>ΣfX =</td>
<td>Σf(X - \overline{X})^2 =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Answers Vary
2. 5
3. 1,735
4. 34.7
5. 50.5
6. 20.5
7. 30
8. Answer Vary
9. 6.82
10. by extracting the square root of the variance
In Activity 2, let the learners extend their learning about measures of variability and inform them to complete the necessary information of the given frequency table.

Answer Key

Activity 2

<table>
<thead>
<tr>
<th>Number of Mistakes</th>
<th>Frequency</th>
<th>X</th>
<th>fX</th>
<th>$(X - \bar{X})$</th>
<th>$(X - \bar{X})^2$</th>
<th>$f(X - \bar{X})^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 – 20</td>
<td>2</td>
<td>19</td>
<td>38</td>
<td>10.26</td>
<td>105.27</td>
<td>210.54</td>
</tr>
<tr>
<td>15 – 17</td>
<td>5</td>
<td>16</td>
<td>80</td>
<td>7.26</td>
<td>52.71</td>
<td>263.55</td>
</tr>
<tr>
<td>12 – 14</td>
<td>6</td>
<td>13</td>
<td>78</td>
<td>4.26</td>
<td>18.15</td>
<td>108.9</td>
</tr>
<tr>
<td>9 – 11</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>1.26</td>
<td>1.59</td>
<td>15.9</td>
</tr>
<tr>
<td>6 – 8</td>
<td>15</td>
<td>7</td>
<td>105</td>
<td>-1.74</td>
<td>3.03</td>
<td>45.45</td>
</tr>
<tr>
<td>3 – 5</td>
<td>8</td>
<td>4</td>
<td>32</td>
<td>-4.74</td>
<td>22.47</td>
<td>179.78</td>
</tr>
<tr>
<td>0 – 2</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>-7.74</td>
<td>59.91</td>
<td>239.64</td>
</tr>
<tr>
<td>$\Sigma f = 50$</td>
<td>$\Sigma fX = 437$</td>
<td>$\Sigma f(X - \bar{X})^2 = 1,063.62$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 50
2. 437
3. Answer Vary
4. 8.74
5. 20.5
6. -0.5
7. 21
8. var = 21.71, SD = 4.66
9. answer vary

Questions

1. How did you determine the unknown values in the frequency distribution table?
2. What is the class size?
3. What is the ΣX?
4. What is the value of the mean in the given distribution table?
5. What is the upper class boundary of the top interval? What about the lower class boundary of the bottom interval?
6. What is the range?
7. What is the variance of the given distribution table?
8. How would you find the variance?
9. What is the standard deviation?
10. How would you solve for the standard deviation?

Were you able to complete the frequency distribution table? Were you able to find the unknown values in the frequency distribution table? In the next activity, you will calculate the range, variance and standard deviation of a given data set.

Activity 2 Directions:

The frequency distribution below shows the number of mistakes of 50 students made in factoring 20 quadratic equations. Use the table to answer the questions that follow. Write your complete solutions and answers in a piece of paper.

Number of Mistakes Made by 50 Students in Factoring 20 Quadratic Equations

<table>
<thead>
<tr>
<th>Number of Mistakes</th>
<th>Frequency</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 – 20</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>15 – 17</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>12 – 14</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>9 – 11</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6 – 8</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>3 – 5</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>0 – 2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Answer Key:

1. 50
2. 437
3. Answer Vary
4. 8.74
5. 20.5
6. -0.5
7. 21
8. var = 21.71, SD = 4.66
9. answer vary
In this part, let the learners be familiarized with the different formulas and ways in getting the value of the range, variance, and standard deviation.

Teacher's Note and Reminders

1. What is the total frequency of the given data set?
2. Complete the frequency distribution table. What is \(\sum fX \)?
3. How would you find the mean of the given data set?
4. What is the mean of the set of data?
5. What is the upper class boundary of the top interval?
6. What is the lower class boundary of the bottom interval?
7. What is the range?
8. Find the variance and standard deviation of the set of data.
9. How are the range, variance, and standard deviation used in interpreting the set of data?

To find the range, variance, and standard deviation of grouped data, take note of the following:

1. **Range of Grouped Data**

 The range is the simplest measure of variability. The range of a frequency distribution is simply the difference between the upper class boundary of the top interval and the lower class boundary of the bottom interval.

 \[\text{Range} = \text{Upper Class Boundary} - \text{Lower Class Boundary} \]

 Illustrative Example:
 Solve for range:

<table>
<thead>
<tr>
<th>Scores in Second Periodical Test of</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 – 50</td>
<td>1</td>
</tr>
<tr>
<td>41 – 45</td>
<td>10</td>
</tr>
<tr>
<td>36 – 40</td>
<td>10</td>
</tr>
<tr>
<td>31 – 35</td>
<td>16</td>
</tr>
<tr>
<td>26 – 30</td>
<td>9</td>
</tr>
<tr>
<td>21 – 25</td>
<td>4</td>
</tr>
</tbody>
</table>

What to Process

How did you find the previous activity? Were you able to find the unknown measures/values? Are you ready to perform the next activity? Will you be able to find the mean, range, variance, and standard deviation of a set of data such as the grades, or test scores? Before proceeding to these activities, read first some important notes on how to calculate the range, variance, and standard deviation of grouped data.
Solutions:
Upper Class Limit of the Highest Interval = 50
Upper Class Boundary of the Highest Interval = 50 + 0.5 = 50.5

Lower Class Limit of the Lowest Interval = 21
Lower Class Boundary of the Lowest Interval = 21 – 0.5 = 20.5

Range = Upper Class Boundary of the Highest Interval – Lower Class Boundary of the Lowest Interval
Range = 50.5 – 20.5
Range = 30

Therefore, the range of the given data set is 30.

2. Variance of Grouped Data (σ^2)

Variance is the average of the square deviation from the mean. For large quantities, the variance is computed using frequency distribution with columns for the midpoint value, the product of the frequency and midpoint value for each interval, the deviation and its square; and the product of the frequency and the squared deviation.

To find variance of a grouped data, use the formula:

$$\sigma^2 = \frac{\sum f(X - \bar{x})^2}{\sum f - 1}$$

where:
- f = class frequency
- X = class mark
- \bar{x} = class mean
- $\sum f$ = total number of frequency

In calculating the variance, do the following steps:

1. Prepare a frequency distribution with appropriate class intervals and write the corresponding frequency (f).
2. Get the midpoint (X) of each class interval in column 2.
3. Multiply frequency (f) and midpoint (X) of each class interval to get fX.
4. Add fX of each interval to get $\sum fX$.
5. Compute the mean using $\bar{x} = \frac{\sum fX}{\sum f}$.
6. Calculate the deviation ($X - \bar{x}$) by subtracting the mean from each midpoint.
7. Square the deviation of each interval to get $(X - \bar{x})^2$.
8. Multiply frequency (f) and $(X - \bar{x})^2$. Find the sum of each product to get $\sum f(X - \bar{x})^2$.
9. Calculate the standard deviation using the formula

$$\sigma^2 = \frac{\sum f(X - \bar{x})^2}{\sum f - 1}$$
Illustrative Example:
Find the variance of the given data set:

<table>
<thead>
<tr>
<th>Scores in Second Periodical Test of I – Faith in Mathematics I</th>
<th>Scores</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 – 50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>41 – 45</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>36 – 40</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>31 – 35</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>26 – 30</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>21 – 25</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Solutions:

<table>
<thead>
<tr>
<th>Scores</th>
<th>Frequency</th>
<th>Class Mark (X)</th>
<th>fX</th>
<th>$(X - \bar{x})$</th>
<th>$(X - \bar{x})^2$</th>
<th>$f(X - \bar{x})^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 – 50</td>
<td>1</td>
<td>48</td>
<td>48</td>
<td>13.4</td>
<td>179.56</td>
<td>179.56</td>
</tr>
<tr>
<td>41 – 45</td>
<td>10</td>
<td>43</td>
<td>430</td>
<td>8.4</td>
<td>70.56</td>
<td>705.6</td>
</tr>
<tr>
<td>36 – 40</td>
<td>10</td>
<td>38</td>
<td>380</td>
<td>3.4</td>
<td>11.56</td>
<td>115.6</td>
</tr>
<tr>
<td>31 – 35</td>
<td>16</td>
<td>33</td>
<td>528</td>
<td>-1.6</td>
<td>2.56</td>
<td>40.96</td>
</tr>
<tr>
<td>26 – 30</td>
<td>9</td>
<td>28</td>
<td>252</td>
<td>-6.6</td>
<td>43.56</td>
<td>392.04</td>
</tr>
<tr>
<td>21 – 25</td>
<td>4</td>
<td>23</td>
<td>92</td>
<td>-11.6</td>
<td>134.56</td>
<td>538.24</td>
</tr>
</tbody>
</table>

\[
\sum f = 50, \quad \sum fX = 1,730, \quad \sum f(X - \bar{x})^2 = 1,972
\]

Mean (\bar{x}) = \[
\frac{\sum fX}{\sum f} = \frac{1,730}{50} = 34.60
\]

Variance (σ^2) = \[
\frac{\sum f(X - \bar{x})^2}{\sum f - 1} = \frac{1,972}{49} = 40.24
\]

Therefore, the variance (σ^2) is 40.24.
After the learner discovers the process of solving the range, variance and standard deviation, let them do Activity 3 and ask them to answer necessary questions.

Answer Key

Activity 3

<table>
<thead>
<tr>
<th>Weekly Allowance (in Pesos)</th>
<th>Frequency</th>
<th>X</th>
<th>fX</th>
<th>$(X - \bar{X})$</th>
<th>$(X - \bar{X})^2$</th>
<th>$f(X - \bar{X})^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-549</td>
<td>2</td>
<td>524.5</td>
<td>1,049</td>
<td>285</td>
<td>81,225</td>
<td>162,450</td>
</tr>
<tr>
<td>450-499</td>
<td>3</td>
<td>474.5</td>
<td>1,423.5</td>
<td>235</td>
<td>55,225</td>
<td>165,675</td>
</tr>
<tr>
<td>400-449</td>
<td>1</td>
<td>424.5</td>
<td>424.5</td>
<td>185</td>
<td>34,225</td>
<td>34,225</td>
</tr>
<tr>
<td>350-399</td>
<td>3</td>
<td>374.5</td>
<td>1,123.5</td>
<td>135</td>
<td>18,225</td>
<td>54,675</td>
</tr>
<tr>
<td>300-349</td>
<td>4</td>
<td>324.5</td>
<td>1,298</td>
<td>85</td>
<td>7,225</td>
<td>28,900</td>
</tr>
<tr>
<td>250-299</td>
<td>14</td>
<td>274.5</td>
<td>3,843</td>
<td>35</td>
<td>1,225</td>
<td>17,150</td>
</tr>
<tr>
<td>200-249</td>
<td>12</td>
<td>224.5</td>
<td>2,694</td>
<td>-15</td>
<td>225</td>
<td>2,700</td>
</tr>
<tr>
<td>150-199</td>
<td>21</td>
<td>174.5</td>
<td>3,664.5</td>
<td>-65</td>
<td>4,225</td>
<td>88,725</td>
</tr>
<tr>
<td>100-149</td>
<td>10</td>
<td>124.5</td>
<td>1,245</td>
<td>-115</td>
<td>13,225</td>
<td>132,250</td>
</tr>
<tr>
<td>$i = 3$</td>
<td>$\Sigma f = 50$</td>
<td>$\Sigma fX = 16,765$</td>
<td>$\Sigma f(X - \bar{X})^2 = 686,750$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Range = 450
Variance (σ^2) = 9,952.90
Standard Deviation (σ) = 99.76

Questions
1. Answers Vary
2. Answers Vary
3. Answers Vary
4. Answers Vary

Illustrative Example:

Refer to the given previous example. Get the square root of the given value of variance:

\[
\sigma = \sqrt{40.24} \\
\sigma = 6.34
\]

Therefore, the standard deviation of the Scores in Second Periodical Test of I – Faith in Mathematics I is **6.34**.

Activity 3
LETS APPLY IT…

Directions: Calculate the range, variance and standard deviation of the Weekly Allowance of Students in Binago School of Fisheries. Write your complete solutions and answers on a sheet of paper.

Weekly Allowance of Students in Binago School of Fisheries

<table>
<thead>
<tr>
<th>Weekly Allowance (in Pesos)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-549</td>
<td>2</td>
</tr>
<tr>
<td>450-499</td>
<td>3</td>
</tr>
<tr>
<td>400-449</td>
<td>1</td>
</tr>
<tr>
<td>350-399</td>
<td>3</td>
</tr>
<tr>
<td>300-349</td>
<td>4</td>
</tr>
<tr>
<td>250-299</td>
<td>14</td>
</tr>
<tr>
<td>200-249</td>
<td>12</td>
</tr>
<tr>
<td>150-199</td>
<td>21</td>
</tr>
<tr>
<td>100-149</td>
<td>10</td>
</tr>
</tbody>
</table>

```
Range = ______________________  
Variance ($\sigma^2$) = ______________________  
Standard Deviation ($\sigma$) = ______________________
```

Were you able to learn different formulas in solving the range, variance and standard deviation of grouped data? In the next activity, try to apply those important notes in getting the value of range, variance, and standard deviation of grouped data.
In Activity 4, the learners will take a challenging activity regarding solving the range, variance and standard deviation and ask them the strategy they used to get the answers.

Answer Key

Activity 4

<table>
<thead>
<tr>
<th>Pledges in Pesos</th>
<th>Frequency</th>
<th>X</th>
<th>fX</th>
<th>(X - \overline{X})</th>
<th>(X - \overline{X})^2</th>
<th>f(X - \overline{X})^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,000 – 9,999</td>
<td>4</td>
<td>9,499.5</td>
<td>37,998</td>
<td>5,480</td>
<td>30,030,400</td>
<td>120,121,600</td>
</tr>
<tr>
<td>8,000 – 8,999</td>
<td>12</td>
<td>8,499.5</td>
<td>101,994</td>
<td>4,480</td>
<td>20,070,400</td>
<td>240,844,800</td>
</tr>
<tr>
<td>7,000 – 7,999</td>
<td>13</td>
<td>7,499.5</td>
<td>97,493.5</td>
<td>3,480</td>
<td>12,110,400</td>
<td>157,435,200</td>
</tr>
<tr>
<td>6,000 – 6,999</td>
<td>15</td>
<td>6,499.5</td>
<td>97,492.5</td>
<td>2,480</td>
<td>6,150,400</td>
<td>92,256,000</td>
</tr>
<tr>
<td>5,000 – 5,999</td>
<td>19</td>
<td>5,499.5</td>
<td>104,490.5</td>
<td>1,480</td>
<td>2,190,400</td>
<td>41,617,600</td>
</tr>
<tr>
<td>4,000 – 4,999</td>
<td>30</td>
<td>4,499.5</td>
<td>134,985</td>
<td>-480</td>
<td>230,400</td>
<td>6,912,000</td>
</tr>
<tr>
<td>3,000 – 3,999</td>
<td>21</td>
<td>3,499.5</td>
<td>73,489.5</td>
<td>-520</td>
<td>270,400</td>
<td>5,678,400</td>
</tr>
<tr>
<td>2,000 – 2,999</td>
<td>41</td>
<td>2,499.5</td>
<td>102,479.5</td>
<td>-1,520</td>
<td>2,310,400</td>
<td>94,726,000</td>
</tr>
<tr>
<td>1,000 – 1,999</td>
<td>31</td>
<td>1,499.5</td>
<td>46,484.5</td>
<td>-2,520</td>
<td>6,350,400</td>
<td>196,862,400</td>
</tr>
<tr>
<td>0 – 999</td>
<td>14</td>
<td>499.5</td>
<td>6,993</td>
<td>-3,520</td>
<td>12,390,400</td>
<td>173,465,600</td>
</tr>
</tbody>
</table>

Questions
1. 803,900
2. 4,019.5
3. 9,999.5
4. -0.5
5. 10,000
6. Answers vary
7. 2,382.85
8. Answers vary
9. Answers vary

Activity 4: Challenge Part...

Directions: Calculate the range, variance and standard deviation of the given grouped data.

<table>
<thead>
<tr>
<th>Pledges for the Victims of Typhoon Pablo</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pledges in Pesos</td>
<td>Frequency</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>9,000 – 9,999</td>
<td>4</td>
</tr>
<tr>
<td>8,000 – 8,999</td>
<td>12</td>
</tr>
<tr>
<td>7,000 – 7,999</td>
<td>13</td>
</tr>
<tr>
<td>6,000 – 6,999</td>
<td>15</td>
</tr>
<tr>
<td>5,000 – 5,999</td>
<td>19</td>
</tr>
<tr>
<td>4,000 – 4,999</td>
<td>30</td>
</tr>
<tr>
<td>3,000 – 3,999</td>
<td>21</td>
</tr>
<tr>
<td>2,000 – 2,999</td>
<td>41</td>
</tr>
<tr>
<td>1,000 – 1,999</td>
<td>31</td>
</tr>
<tr>
<td>0 – 999</td>
<td>14</td>
</tr>
</tbody>
</table>

Questions
1. What is the \(\sum X \)?
2. What is the value of the mean in the given distribution table?
3. What is the upper class boundary of the top interval? What about the lower class boundary of the bottom interval?
4. What is the range?
5. What is the variance of the given distribution table?
6. How would you find the variance?
7. What is the standard deviation?
8. How would you solve for the standard deviation?
9. What have you learned from the given activity?
What to Understand

Let the learners reflect and analyze how they were able to develop a concept out of the activities they have studied. The knowledge gained here will further help you understand and answer the next activities. After doing the following activities, you should be able to answer the following question: How are the measures of variability of grouped data used in solving real-life problems and in making decisions?

Activity 5

1. Below are the scores of 65 students in a Mathematics test.

<table>
<thead>
<tr>
<th>Score</th>
<th>f</th>
<th>X</th>
<th>fX</th>
<th>(X - \bar{x})</th>
<th>(X - \bar{x})^2</th>
<th>f(X - \bar{x})^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 – 58</td>
<td>2</td>
<td>56.5</td>
<td>113</td>
<td>19.94</td>
<td>397.60</td>
<td>795.21</td>
</tr>
<tr>
<td>51 – 54</td>
<td>4</td>
<td>52.5</td>
<td>210</td>
<td>15.94</td>
<td>254.08</td>
<td>1016.33</td>
</tr>
<tr>
<td>47 – 50</td>
<td>5</td>
<td>48.5</td>
<td>242.5</td>
<td>11.94</td>
<td>142.56</td>
<td>712.82</td>
</tr>
<tr>
<td>43 – 46</td>
<td>6</td>
<td>44.5</td>
<td>267</td>
<td>7.94</td>
<td>63.04</td>
<td>378.26</td>
</tr>
<tr>
<td>39 – 42</td>
<td>10</td>
<td>40.5</td>
<td>405</td>
<td>3.94</td>
<td>15.52</td>
<td>155.24</td>
</tr>
<tr>
<td>35 – 38</td>
<td>13</td>
<td>36.5</td>
<td>474.5</td>
<td>-0.06</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>31 – 34</td>
<td>8</td>
<td>32.5</td>
<td>260</td>
<td>-4.06</td>
<td>16.48</td>
<td>131.87</td>
</tr>
<tr>
<td>27 – 30</td>
<td>6</td>
<td>28.5</td>
<td>171</td>
<td>-8.06</td>
<td>64.96</td>
<td>389.78</td>
</tr>
<tr>
<td>23 – 26</td>
<td>6</td>
<td>24.5</td>
<td>147</td>
<td>-12.06</td>
<td>145.44</td>
<td>872.66</td>
</tr>
<tr>
<td>19 – 22</td>
<td>2</td>
<td>20.5</td>
<td>41</td>
<td>-16.06</td>
<td>257.92</td>
<td>515.85</td>
</tr>
<tr>
<td>15 – 18</td>
<td>2</td>
<td>16.5</td>
<td>33</td>
<td>-20.06</td>
<td>402.40</td>
<td>804.81</td>
</tr>
<tr>
<td>11 – 14</td>
<td>1</td>
<td>12.5</td>
<td>12.5</td>
<td>-24.06</td>
<td>578.88</td>
<td>578.88</td>
</tr>
<tr>
<td>(i = 4)</td>
<td></td>
<td></td>
<td>(\Sigma f = 65)</td>
<td>(\Sigma fX = 2,376.5)</td>
<td>(\Sigma f(X - \bar{x})^2 = 6,351.75)</td>
<td></td>
</tr>
</tbody>
</table>

a. Answers vary
b. Range = 48 Var = 99.24 SD = 9.96
c. Answers vary
d. Answers vary

2. Is the range the most appropriate measure of dispersion for grouped data? Why? How about the variance? standard deviation? Explain your answer.

3. Is it always necessary to group a set of data when finding its range, variance and standard deviation? Why?

Answer Key

Activity 5

1.

<table>
<thead>
<tr>
<th>Score</th>
<th>f</th>
<th>X</th>
<th>fX</th>
<th>(X - \bar{x})</th>
<th>(X - \bar{x})^2</th>
<th>f(X - \bar{x})^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 – 58</td>
<td>2</td>
<td>56.5</td>
<td>113</td>
<td>19.94</td>
<td>397.60</td>
<td>795.21</td>
</tr>
<tr>
<td>51 – 54</td>
<td>4</td>
<td>52.5</td>
<td>210</td>
<td>15.94</td>
<td>254.08</td>
<td>1016.33</td>
</tr>
<tr>
<td>47 – 50</td>
<td>5</td>
<td>48.5</td>
<td>242.5</td>
<td>11.94</td>
<td>142.56</td>
<td>712.82</td>
</tr>
<tr>
<td>43 – 46</td>
<td>6</td>
<td>44.5</td>
<td>267</td>
<td>7.94</td>
<td>63.04</td>
<td>378.26</td>
</tr>
<tr>
<td>39 – 42</td>
<td>10</td>
<td>40.5</td>
<td>405</td>
<td>3.94</td>
<td>15.52</td>
<td>155.24</td>
</tr>
<tr>
<td>35 – 38</td>
<td>13</td>
<td>36.5</td>
<td>474.5</td>
<td>-0.06</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>31 – 34</td>
<td>8</td>
<td>32.5</td>
<td>260</td>
<td>-4.06</td>
<td>16.48</td>
<td>131.87</td>
</tr>
<tr>
<td>27 – 30</td>
<td>6</td>
<td>28.5</td>
<td>171</td>
<td>-8.06</td>
<td>64.96</td>
<td>389.78</td>
</tr>
<tr>
<td>23 – 26</td>
<td>6</td>
<td>24.5</td>
<td>147</td>
<td>-12.06</td>
<td>145.44</td>
<td>872.66</td>
</tr>
<tr>
<td>19 – 22</td>
<td>2</td>
<td>20.5</td>
<td>41</td>
<td>-16.06</td>
<td>257.92</td>
<td>515.85</td>
</tr>
<tr>
<td>15 – 18</td>
<td>2</td>
<td>16.5</td>
<td>33</td>
<td>-20.06</td>
<td>402.40</td>
<td>804.81</td>
</tr>
<tr>
<td>11 – 14</td>
<td>1</td>
<td>12.5</td>
<td>12.5</td>
<td>-24.06</td>
<td>578.88</td>
<td>578.88</td>
</tr>
<tr>
<td>(i = 4)</td>
<td></td>
<td></td>
<td>(\Sigma f = 65)</td>
<td>(\Sigma fX = 2,376.5)</td>
<td>(\Sigma f(X - \bar{x})^2 = 6,351.75)</td>
<td></td>
</tr>
</tbody>
</table>

a. Complete the table by filling in the values of X (the class marks or midpoints), (X - \bar{x}), (X - \bar{x})^2 and f(X - \bar{x})^2. Explain how you arrived at your answer.

b. Find the range, variance, and standard deviation of the set of data.

c. What you can say about the standard deviation?

d. Which measure is considered unreliable? Why?

2. Answers vary

3. Answers vary
What new insights do you have about solving measures of variability of grouped data? What do you realize after learning and doing different activities?

Now, you can extend your understanding by doing the tasks in the next section.

Demonstrate your understanding on measures of central tendency and measures of variability through products that reflect meaningful and relevant problems/situations.

Create a scenario of the task in paragraph form incorporating GRASP: Goal, Role, Audience, Situation, Product/Performance, Standards.

G: Make a criteria for a scholarship grant based on monthly family income and scholastic performance.
R: Barangay Social Worker
A: Local NGO
S: An NGO in the locality will grant scholarship to qualified and deserving scholars
P: Criteria
S: Justification, Accuracy of data, Clarity of Presentation

Teacher’s Note and Reminders

Let the learners demonstrate their understanding of the lesson about measures of central tendency and variability in real-life situations by creating a scenario that reflects meaningful and relevant situations.
Post-Test

1. Suppose your grades on three English exams are 80, 93, and 91. What grade do you need on your next exam to have an average of 90 on the four exams?
 a. 96
 b. 95
 c. 94
 d. 93
 Answer: A

2. Fe is hosting a kiddie party in her house. Six kids aged 12 and 5 babies aged 2 attended the party. Which measure of central tendency is appropriate to use to find the average age?
 a. Mean
 b. Median
 c. Mode
 d. Range
 Answer: C

3. What is the Mode of 3, 4, 4, 5, 6, 6, 7
 a. 4
 b. 6
 c. 4 and 6
 d. 5
 Answer: C

4. What is the average height of the two teams in feet?

 Feet and inches
 6’ 6’1” 6’4” 6’4” 6’6” 5’7” 6’ 6’4” 6’4” 7’
 inches 72 73 76 76 78 67 72 76 76 84

 a. 6.0’
 b. 6.25’
 c. 6.3’
 d. 6.5’
 Answer: B

 If you were to join any of these two teams, which team would you choose? Why?
For items 5 – 12 refer to the data below. Choose the letter that corresponds to the best answer:

<table>
<thead>
<tr>
<th>Class</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 – 50</td>
<td>1</td>
</tr>
<tr>
<td>41 – 45</td>
<td>2</td>
</tr>
<tr>
<td>36 – 40</td>
<td>3</td>
</tr>
<tr>
<td>31 – 35</td>
<td>10</td>
</tr>
<tr>
<td>26 – 30</td>
<td>6</td>
</tr>
<tr>
<td>21 – 25</td>
<td>9</td>
</tr>
<tr>
<td>16 – 20</td>
<td>5</td>
</tr>
<tr>
<td>11 – 15</td>
<td>6</td>
</tr>
<tr>
<td>6 – 10</td>
<td>4</td>
</tr>
<tr>
<td>1 – 5</td>
<td>2</td>
</tr>
</tbody>
</table>

5. What is the class size?
 a. 4 c. 5
 b. 3 d. 6
 Answer: C

6. What is the class mark of the class with the highest frequency?
 a. 33 c. 38
 b. 43 d. 48
 Answer: A

7. What is the Σ/X?
 a. 1,158 c. 1,160
 b. 1,159 d. 1,161
 Answer: D
8. What is the modal class?
 a. 11-15 c. 31-35
 b. 10.5-15.5 d. 30.5-35.5
 Answer: C

9. What is the value of the median score?
 a. 24.10 c. 24.15
 b. 24.29 d. 24.39
 Answer: D

10. What is the range of the given set of data?
 a. 50 c. 49.5
 b. 50.5 d. 99.5
 Answer: A

11. What is the variance?
 a. 119.59 b. 119.49 c. 119.40 d. 119.50
 Answer: C

12. What is the standard deviation?
 a. 10.90 b. 10.91 c. 10.92 d. 10.93
 Answer: D
For Nos. 13-15. The table below is the frequency distribution of the ages of 50 employees in Ong Ricemill, choose the letter of the best answer in each given question:

<table>
<thead>
<tr>
<th>Age of Employees</th>
<th>No. of Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-69</td>
<td>12</td>
</tr>
<tr>
<td>50-59</td>
<td>8</td>
</tr>
<tr>
<td>40-49</td>
<td>12</td>
</tr>
<tr>
<td>30-39</td>
<td>13</td>
</tr>
<tr>
<td>20-29</td>
<td>5</td>
</tr>
</tbody>
</table>

13. What is the average mean of the ages of the employees?
 a. 46.7 c. 46.3
 b. 46.2 d. 46.5
 Answer: C

14. Which measure(s) of variability is/are best to use in order to find the interval among the ages of the employees in Ong Ricemill?
 a. Range c. Variance
 b. Standard Deviation d. Both b and c
 Answer: B

15. What conclusion you can draw from the given data set? Explain further you answer.
 Answer: Answers vary

16. Margie has grades 86, 68 and 79 in her first three tests in Algebra. What grade must she obtain on the fourth test to get an average of 78?
 a. 76 c. 78
 b. 77 d. 79
 Answer: D
17. What is the median age of a group of employees whose ages are 36, 38, 18, 10, 16 and 15 years?
 a. 10 c. 16
 b. 15 d. 17
 Answer: D

18. Nine people gave contributions in pesos 100, 200, 100, 300, 300, 200, 200, 150, 100, and 100 for a door prize. What is the median contribution?
 a. Php 100 c. Php 175
 b. Php 150 d. Php 200
 Answer: C

19. If the range of a set of scores is 14 and the lowest score is 7, what is the highest score?
 a. 21 c. 14
 b. 24 d. 7
 Answer: B

20. What is the standard deviation of the scores 5, 4, 3, 6 and 2?
 a. 2 b. 2.5 c. 3 d. 3.5
 Answer: A